Enter a problem...
Calculus Examples
at
Step 1
Step 1.1
Substitute in for .
Step 1.2
Solve for .
Step 1.2.1
Remove parentheses.
Step 1.2.2
Simplify .
Step 1.2.2.1
The natural logarithm of is .
Step 1.2.2.2
Multiply by .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
The derivative of with respect to is .
Step 2.3
Combine and .
Step 2.4
Evaluate the derivative at .
Step 2.5
Divide by .
Step 3
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Step 3.3.1
Add and .
Step 3.3.2
Simplify .
Step 3.3.2.1
Apply the distributive property.
Step 3.3.2.2
Multiply by .
Step 4