Enter a problem...
Calculus Examples
y=1+sin(x)cos(x)y=1+sin(x)cos(x) , (π,-1)(π,−1)
Step 1
Step 1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=1+sin(x)f(x)=1+sin(x) and g(x)=cos(x)g(x)=cos(x).
cos(x)ddx[1+sin(x)]-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)ddx[1+sin(x)]−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of 1+sin(x)1+sin(x) with respect to xx is ddx[1]+ddx[sin(x)]ddx[1]+ddx[sin(x)].
cos(x)(ddx[1]+ddx[sin(x)])-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)(ddx[1]+ddx[sin(x)])−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.2.2
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
cos(x)(0+ddx[sin(x)])-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)(0+ddx[sin(x)])−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.2.3
Add 00 and ddx[sin(x)]ddx[sin(x)].
cos(x)ddx[sin(x)]-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)ddx[sin(x)]−(1+sin(x))ddx[cos(x)]cos2(x)
cos(x)ddx[sin(x)]-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)ddx[sin(x)]−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.3
The derivative of sin(x)sin(x) with respect to xx is cos(x)cos(x).
cos(x)cos(x)-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)cos(x)−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.4
Raise cos(x)cos(x) to the power of 11.
cos1(x)cos(x)-(1+sin(x))ddx[cos(x)]cos2(x)cos1(x)cos(x)−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.5
Raise cos(x)cos(x) to the power of 11.
cos1(x)cos1(x)-(1+sin(x))ddx[cos(x)]cos2(x)cos1(x)cos1(x)−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.6
Use the power rule aman=am+naman=am+n to combine exponents.
cos(x)1+1-(1+sin(x))ddx[cos(x)]cos2(x)cos(x)1+1−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.7
Add 11 and 11.
cos2(x)-(1+sin(x))ddx[cos(x)]cos2(x)cos2(x)−(1+sin(x))ddx[cos(x)]cos2(x)
Step 1.8
The derivative of cos(x)cos(x) with respect to xx is -sin(x)−sin(x).
cos2(x)-(1+sin(x))(-sin(x))cos2(x)cos2(x)−(1+sin(x))(−sin(x))cos2(x)
Step 1.9
Multiply.
Step 1.9.1
Multiply -1−1 by -1−1.
cos2(x)+1(1+sin(x))sin(x)cos2(x)cos2(x)+1(1+sin(x))sin(x)cos2(x)
Step 1.9.2
Multiply 1+sin(x)1+sin(x) by 11.
cos2(x)+(1+sin(x))sin(x)cos2(x)cos2(x)+(1+sin(x))sin(x)cos2(x)
cos2(x)+(1+sin(x))sin(x)cos2(x)cos2(x)+(1+sin(x))sin(x)cos2(x)
Step 1.10
Simplify.
Step 1.10.1
Apply the distributive property.
cos2(x)+1sin(x)+sin(x)sin(x)cos2(x)cos2(x)+1sin(x)+sin(x)sin(x)cos2(x)
Step 1.10.2
Simplify the numerator.
Step 1.10.2.1
Simplify each term.
Step 1.10.2.1.1
Multiply sin(x)sin(x) by 11.
cos2(x)+sin(x)+sin(x)sin(x)cos2(x)cos2(x)+sin(x)+sin(x)sin(x)cos2(x)
Step 1.10.2.1.2
Multiply sin(x)sin(x)sin(x)sin(x).
Step 1.10.2.1.2.1
Raise sin(x)sin(x) to the power of 11.
cos2(x)+sin(x)+sin1(x)sin(x)cos2(x)cos2(x)+sin(x)+sin1(x)sin(x)cos2(x)
Step 1.10.2.1.2.2
Raise sin(x)sin(x) to the power of 11.
cos2(x)+sin(x)+sin1(x)sin1(x)cos2(x)cos2(x)+sin(x)+sin1(x)sin1(x)cos2(x)
Step 1.10.2.1.2.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos2(x)+sin(x)+sin(x)1+1cos2(x)cos2(x)+sin(x)+sin(x)1+1cos2(x)
Step 1.10.2.1.2.4
Add 11 and 11.
cos2(x)+sin(x)+sin2(x)cos2(x)cos2(x)+sin(x)+sin2(x)cos2(x)
cos2(x)+sin(x)+sin2(x)cos2(x)cos2(x)+sin(x)+sin2(x)cos2(x)
cos2(x)+sin(x)+sin2(x)cos2(x)cos2(x)+sin(x)+sin2(x)cos2(x)
Step 1.10.2.2
Move sin2(x)sin2(x).
cos2(x)+sin2(x)+sin(x)cos2(x)cos2(x)+sin2(x)+sin(x)cos2(x)
Step 1.10.2.3
Rearrange terms.
sin2(x)+cos2(x)+sin(x)cos2(x)sin2(x)+cos2(x)+sin(x)cos2(x)
Step 1.10.2.4
Apply pythagorean identity.
1+sin(x)cos2(x)1+sin(x)cos2(x)
1+sin(x)cos2(x)1+sin(x)cos2(x)
1+sin(x)cos2(x)1+sin(x)cos2(x)
Step 1.11
Evaluate the derivative at x=πx=π.
1+sin(π)cos2(π)1+sin(π)cos2(π)
Step 1.12
Simplify.
Step 1.12.1
Simplify the numerator.
Step 1.12.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
1+sin(0)cos2(π)1+sin(0)cos2(π)
Step 1.12.1.2
The exact value of sin(0)sin(0) is 00.
1+0cos2(π)1+0cos2(π)
Step 1.12.1.3
Add 11 and 00.
1cos2(π)1cos2(π)
1cos2(π)1cos2(π)
Step 1.12.2
Simplify the denominator.
Step 1.12.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
1(-cos(0))21(−cos(0))2
Step 1.12.2.2
The exact value of cos(0)cos(0) is 11.
1(-1⋅1)21(−1⋅1)2
Step 1.12.2.3
Multiply -1−1 by 11.
1(-1)21(−1)2
Step 1.12.2.4
Raise -1−1 to the power of 22.
1111
1111
Step 1.12.3
Cancel the common factor of 11.
Step 1.12.3.1
Cancel the common factor.
11
Step 1.12.3.2
Rewrite the expression.
1
1
1
1
Step 2
Step 2.1
Use the slope 1 and a given point (π,-1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-1)=1⋅(x-(π))
Step 2.2
Simplify the equation and keep it in point-slope form.
y+1=1⋅(x-π)
Step 2.3
Solve for y.
Step 2.3.1
Multiply x-π by 1.
y+1=x-π
Step 2.3.2
Subtract 1 from both sides of the equation.
y=x-π-1
y=x-π-1
y=x-π-1
Step 3