Enter a problem...
Calculus Examples
f(x)=-5cot(x)-5π2-4f(x)=−5cot(x)−5π2−4 at x=-π4x=−π4
Step 1
Step 1.1
Substitute -π4−π4 in for xx.
y=-5cot(-π4)-5π2-4y=−5cot(−π4)−5π2−4
Step 1.2
Solve for yy.
Step 1.2.1
Remove parentheses.
y=-5cot(-π4)-5π2-4y=−5cot(−π4)−5π2−4
Step 1.2.2
Simplify -5cot(-π4)-5π2-4−5cot(−π4)−5π2−4.
Step 1.2.2.1
Simplify each term.
Step 1.2.2.1.1
Add full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
y=-5cot(7π4)-5π2-4y=−5cot(7π4)−5π2−4
Step 1.2.2.1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the fourth quadrant.
y=-5(-cot(π4))-5π2-4y=−5(−cot(π4))−5π2−4
Step 1.2.2.1.3
The exact value of cot(π4)cot(π4) is 11.
y=-5(-1⋅1)-5π2-4y=−5(−1⋅1)−5π2−4
Step 1.2.2.1.4
Multiply -5(-1⋅1)−5(−1⋅1).
Step 1.2.2.1.4.1
Multiply -1−1 by 11.
y=-5⋅-1-5π2-4y=−5⋅−1−5π2−4
Step 1.2.2.1.4.2
Multiply -5−5 by -1−1.
y=5-5π2-4y=5−5π2−4
y=5-5π2-4y=5−5π2−4
y=5-5π2-4y=5−5π2−4
Step 1.2.2.2
Subtract 44 from 55.
y=1-5π2y=1−5π2
y=1-5π2y=1−5π2
y=1-5π2y=1−5π2
y=1-5π2y=1−5π2
Step 2
Step 2.1
By the Sum Rule, the derivative of -5cot(x)-5π2-4−5cot(x)−5π2−4 with respect to xx is ddx[-5cot(x)]+ddx[-5π2]+ddx[-4]ddx[−5cot(x)]+ddx[−5π2]+ddx[−4].
ddx[-5cot(x)]+ddx[-5π2]+ddx[-4]ddx[−5cot(x)]+ddx[−5π2]+ddx[−4]
Step 2.2
Evaluate ddx[-5cot(x)]ddx[−5cot(x)].
Step 2.2.1
Since -5−5 is constant with respect to xx, the derivative of -5cot(x)−5cot(x) with respect to xx is -5ddx[cot(x)]−5ddx[cot(x)].
-5ddx[cot(x)]+ddx[-5π2]+ddx[-4]−5ddx[cot(x)]+ddx[−5π2]+ddx[−4]
Step 2.2.2
The derivative of cot(x)cot(x) with respect to xx is -csc2(x)−csc2(x).
-5(-csc2(x))+ddx[-5π2]+ddx[-4]−5(−csc2(x))+ddx[−5π2]+ddx[−4]
Step 2.2.3
Multiply -1−1 by -5−5.
5csc2(x)+ddx[-5π2]+ddx[-4]5csc2(x)+ddx[−5π2]+ddx[−4]
5csc2(x)+ddx[-5π2]+ddx[-4]5csc2(x)+ddx[−5π2]+ddx[−4]
Step 2.3
Differentiate using the Constant Rule.
Step 2.3.1
Since -5π2−5π2 is constant with respect to xx, the derivative of -5π2−5π2 with respect to xx is 00.
5csc2(x)+0+ddx[-4]5csc2(x)+0+ddx[−4]
Step 2.3.2
Since -4−4 is constant with respect to xx, the derivative of -4−4 with respect to xx is 00.
5csc2(x)+0+05csc2(x)+0+0
5csc2(x)+0+05csc2(x)+0+0
Step 2.4
Combine terms.
Step 2.4.1
Add 5csc2(x)5csc2(x) and 00.
5csc2(x)+05csc2(x)+0
Step 2.4.2
Add 5csc2(x)5csc2(x) and 00.
5csc2(x)5csc2(x)
5csc2(x)5csc2(x)
Step 2.5
Evaluate the derivative at x=-π4x=−π4.
5csc2(-π4)5csc2(−π4)
Step 2.6
Simplify.
Step 2.6.1
Add full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
5csc2(7π4)5csc2(7π4)
Step 2.6.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosecant is negative in the fourth quadrant.
5(-csc(π4))25(−csc(π4))2
Step 2.6.3
The exact value of csc(π4)csc(π4) is √2√2.
5(-√2)25(−√2)2
Step 2.6.4
Simplify the expression.
Step 2.6.4.1
Apply the product rule to -√2−√2.
5((-1)2√22)5((−1)2√22)
Step 2.6.4.2
Raise -1−1 to the power of 22.
5(1√22)5(1√22)
Step 2.6.4.3
Multiply √22√22 by 11.
5√225√22
5√225√22
Step 2.6.5
Rewrite √22√22 as 22.
Step 2.6.5.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
5(212)25(212)2
Step 2.6.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
5⋅212⋅25⋅212⋅2
Step 2.6.5.3
Combine 1212 and 22.
5⋅2225⋅222
Step 2.6.5.4
Cancel the common factor of 22.
Step 2.6.5.4.1
Cancel the common factor.
5⋅222
Step 2.6.5.4.2
Rewrite the expression.
5⋅21
5⋅21
Step 2.6.5.5
Evaluate the exponent.
5⋅2
5⋅2
Step 2.6.6
Multiply 5 by 2.
10
10
10
Step 3
Step 3.1
Use the slope 10 and a given point (-π4,1-5π2) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1-5π2)=10⋅(x-(-π4))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-1+5π2=10⋅(x+π4)
Step 3.3
Solve for y.
Step 3.3.1
Simplify 10⋅(x+π4).
Step 3.3.1.1
Rewrite.
y-1+5π2=0+0+10⋅(x+π4)
Step 3.3.1.2
Simplify by adding zeros.
y-1+5π2=10⋅(x+π4)
Step 3.3.1.3
Apply the distributive property.
y-1+5π2=10x+10π4
Step 3.3.1.4
Cancel the common factor of 2.
Step 3.3.1.4.1
Factor 2 out of 10.
y-1+5π2=10x+2(5)π4
Step 3.3.1.4.2
Factor 2 out of 4.
y-1+5π2=10x+2⋅5π2⋅2
Step 3.3.1.4.3
Cancel the common factor.
y-1+5π2=10x+2⋅5π2⋅2
Step 3.3.1.4.4
Rewrite the expression.
y-1+5π2=10x+5π2
y-1+5π2=10x+5π2
Step 3.3.1.5
Combine 5 and π2.
y-1+5π2=10x+5π2
y-1+5π2=10x+5π2
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Step 3.3.2.1
Add 1 to both sides of the equation.
y+5π2=10x+5π2+1
Step 3.3.2.2
Subtract 5π2 from both sides of the equation.
y=10x+5π2+1-5π2
Step 3.3.2.3
Combine the opposite terms in 10x+5π2+1-5π2.
Step 3.3.2.3.1
Combine the numerators over the common denominator.
y=10x+5π-5π2+1
Step 3.3.2.3.2
Subtract 5π from 5π.
y=10x+02+1
y=10x+02+1
Step 3.3.2.4
Divide 0 by 2.
y=10x+0+1
Step 3.3.2.5
Add 10x and 0.
y=10x+1
y=10x+1
y=10x+1
y=10x+1
Step 4