Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
The derivative of with respect to is .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Multiply by .
Step 1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.7
Add and .
Step 1.3
Simplify.
Step 1.3.1
Reorder the factors of .
Step 1.3.2
Factor using the perfect square rule.
Step 1.3.2.1
Rewrite as .
Step 1.3.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.3.2.3
Rewrite the polynomial.
Step 1.3.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.3.3
Multiply by .
Step 1.3.4
Factor out of .
Step 1.3.4.1
Factor out of .
Step 1.3.4.2
Factor out of .
Step 1.3.4.3
Factor out of .
Step 1.3.5
Cancel the common factor of and .
Step 1.3.5.1
Factor out of .
Step 1.3.5.2
Cancel the common factors.
Step 1.3.5.2.1
Factor out of .
Step 1.3.5.2.2
Cancel the common factor.
Step 1.3.5.2.3
Rewrite the expression.
Step 1.4
Evaluate the derivative at .
Step 1.5
Simplify.
Step 1.5.1
Subtract from .
Step 1.5.2
Divide by .
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Add and .
Step 2.3.2
Simplify .
Step 2.3.2.1
Apply the distributive property.
Step 2.3.2.2
Multiply by .
Step 3