Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate using the chain rule, which states that is where and .
Step 1.1.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2
The derivative of with respect to is .
Step 1.1.2.3
Replace all occurrences of with .
Step 1.1.3
Differentiate.
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Simplify the expression.
Step 1.1.3.3.1
Multiply by .
Step 1.1.3.3.2
Move to the left of .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Simplify.
Step 1.3.1
Cancel the common factor of .
Step 1.3.1.1
Factor out of .
Step 1.3.1.2
Cancel the common factor.
Step 1.3.1.3
Rewrite the expression.
Step 1.3.2
The exact value of is .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
Simplify.
Step 1.5.1
Cancel the common factor of .
Step 1.5.1.1
Cancel the common factor.
Step 1.5.1.2
Rewrite the expression.
Step 1.5.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 1.5.3
The exact value of is .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
Step 5.1
Evaluate at and at .
Step 5.2
Simplify the expression.
Step 5.2.1
Raising to any positive power yields .
Step 5.2.2
Multiply by .
Step 5.2.3
Subtract from .
Step 5.3
Simplify.
Step 5.3.1
Multiply by .
Step 5.3.2
Multiply by .
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: