Calculus Examples

Integrate Using u-Substitution integral from pi/4 to (3pi)/4 of csc(x) with respect to x
3π4π4csc(x)dx3π4π4csc(x)dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
The integral of csc(x)csc(x) with respect to xx is ln(|csc(x)-cot(x)|)ln(|csc(x)cot(x)|).
ln(|csc(x)-cot(x)|)]3π4π4ln(|csc(x)cot(x)|)]3π4π4
Step 3
Simplify the answer.
Tap for more steps...
Step 3.1
Evaluate ln(|csc(x)-cot(x)|)ln(|csc(x)cot(x)|) at 3π43π4 and at π4π4.
ln(|csc(3π4)-cot(3π4)|)-ln(|csc(π4)-cot(π4)|)ln(csc(3π4)cot(3π4))ln(csc(π4)cot(π4))
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
The exact value of csc(π4)csc(π4) is 22.
ln(|csc(3π4)-cot(3π4)|)-ln(|2-cot(π4)|)ln(csc(3π4)cot(3π4))ln(2cot(π4))
Step 3.2.2
The exact value of cot(π4)cot(π4) is 11.
ln(|csc(3π4)-cot(3π4)|)-ln(|2-11|)ln(csc(3π4)cot(3π4))ln(211)
Step 3.2.3
Multiply -11 by 11.
ln(|csc(3π4)-cot(3π4)|)-ln(|2-1|)ln(csc(3π4)cot(3π4))ln(21)
Step 3.2.4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)logb(y)=logb(xy).
ln(|csc(3π4)-cot(3π4)||2-1|)lncsc(3π4)cot(3π4)21
ln(|csc(3π4)-cot(3π4)||2-1|)lncsc(3π4)cot(3π4)21
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the second quadrant.
ln(|csc(3π4)--cot(π4)||2-1|)lncsc(3π4)cot(π4)21
Step 3.3.2
The exact value of cot(π4)cot(π4) is 11.
ln(|csc(3π4)-(-11)||2-1|)lncsc(3π4)(11)21
Step 3.3.3
Multiply -11 by 11.
ln(|csc(3π4)--1||2-1|)lncsc(3π4)121
Step 3.3.4
Multiply -11 by -11.
ln(|csc(3π4)+1||2-1|)lncsc(3π4)+121
Step 3.3.5
Simplify the numerator.
Tap for more steps...
Step 3.3.5.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
ln(|csc(π4)+1||2-1|)ln(csc(π4)+121)
Step 3.3.5.2
The exact value of csc(π4)csc(π4) is 22.
ln(|2+1||2-1|)ln(2+121)
Step 3.3.5.3
2+12+1 is approximately 2.414213562.41421356 which is positive so remove the absolute value
ln(2+1|2-1|)ln(2+121)
ln(2+1|2-1|)ln(2+121)
Step 3.3.6
2-121 is approximately 0.414213560.41421356 which is positive so remove the absolute value
ln(2+12-1)ln(2+121)
ln(2+12-1)ln(2+121)
ln(2+12-1)ln(2+121)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Multiply 2+12-12+121 by 2+12+12+12+1.
ln(2+12-12+12+1)ln(2+1212+12+1)
Step 4.2
Multiply 2+12-12+121 by 2+12+12+12+1.
ln((2+1)(2+1)(2-1)(2+1))ln(2+1)(2+1)(21)(2+1)
Step 4.3
Expand the denominator using the FOIL method.
ln((2+1)(2+1)22+2-2-1)ln(2+1)(2+1)22+221
Step 4.4
Simplify.
ln((2+1)(2+1)1)ln(2+1)(2+1)1
Step 4.5
Divide (2+1)(2+1)(2+1)(2+1) by 11.
ln((2+1)(2+1))ln((2+1)(2+1))
Step 4.6
Rewrite ln((2+1)(2+1))ln((2+1)(2+1)) as ln(2+1)+ln(2+1)ln(2+1)+ln(2+1).
ln(2+1)+ln(2+1)
Step 4.7
Add ln(2+1) and ln(2+1).
2ln(2+1)
2ln(2+1)
Step 5
The result can be shown in multiple forms.
Exact Form:
2ln(2+1)
Decimal Form:
1.76274717
 [x2  12  π  xdx ]