Enter a problem...
Calculus Examples
∫3π4π4csc(x)dx∫3π4π4csc(x)dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
The integral of csc(x)csc(x) with respect to xx is ln(|csc(x)-cot(x)|)ln(|csc(x)−cot(x)|).
ln(|csc(x)-cot(x)|)]3π4π4ln(|csc(x)−cot(x)|)]3π4π4
Step 3
Step 3.1
Evaluate ln(|csc(x)-cot(x)|)ln(|csc(x)−cot(x)|) at 3π43π4 and at π4π4.
ln(|csc(3π4)-cot(3π4)|)-ln(|csc(π4)-cot(π4)|)ln(∣∣∣csc(3π4)−cot(3π4)∣∣∣)−ln(∣∣csc(π4)−cot(π4)∣∣)
Step 3.2
Simplify.
Step 3.2.1
The exact value of csc(π4)csc(π4) is √2√2.
ln(|csc(3π4)-cot(3π4)|)-ln(|√2-cot(π4)|)ln(∣∣∣csc(3π4)−cot(3π4)∣∣∣)−ln(∣∣√2−cot(π4)∣∣)
Step 3.2.2
The exact value of cot(π4)cot(π4) is 11.
ln(|csc(3π4)-cot(3π4)|)-ln(|√2-1⋅1|)ln(∣∣∣csc(3π4)−cot(3π4)∣∣∣)−ln(∣∣√2−1⋅1∣∣)
Step 3.2.3
Multiply -1−1 by 11.
ln(|csc(3π4)-cot(3π4)|)-ln(|√2-1|)ln(∣∣∣csc(3π4)−cot(3π4)∣∣∣)−ln(∣∣√2−1∣∣)
Step 3.2.4
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
ln(|csc(3π4)-cot(3π4)||√2-1|)ln⎛⎜⎝∣∣csc(3π4)−cot(3π4)∣∣∣∣√2−1∣∣⎞⎟⎠
ln(|csc(3π4)-cot(3π4)||√2-1|)ln⎛⎜⎝∣∣csc(3π4)−cot(3π4)∣∣∣∣√2−1∣∣⎞⎟⎠
Step 3.3
Simplify.
Step 3.3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the second quadrant.
ln(|csc(3π4)--cot(π4)||√2-1|)ln⎛⎜⎝∣∣csc(3π4)−−cot(π4)∣∣∣∣√2−1∣∣⎞⎟⎠
Step 3.3.2
The exact value of cot(π4)cot(π4) is 11.
ln(|csc(3π4)-(-1⋅1)||√2-1|)ln⎛⎜⎝∣∣csc(3π4)−(−1⋅1)∣∣∣∣√2−1∣∣⎞⎟⎠
Step 3.3.3
Multiply -1−1 by 11.
ln(|csc(3π4)--1||√2-1|)ln⎛⎜⎝∣∣csc(3π4)−−1∣∣∣∣√2−1∣∣⎞⎟⎠
Step 3.3.4
Multiply -1−1 by -1−1.
ln(|csc(3π4)+1||√2-1|)ln⎛⎜⎝∣∣csc(3π4)+1∣∣∣∣√2−1∣∣⎞⎟⎠
Step 3.3.5
Simplify the numerator.
Step 3.3.5.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
ln(|csc(π4)+1||√2-1|)ln(∣∣csc(π4)+1∣∣∣∣√2−1∣∣)
Step 3.3.5.2
The exact value of csc(π4)csc(π4) is √2√2.
ln(|√2+1||√2-1|)ln(∣∣√2+1∣∣∣∣√2−1∣∣)
Step 3.3.5.3
√2+1√2+1 is approximately 2.414213562.41421356 which is positive so remove the absolute value
ln(√2+1|√2-1|)ln(√2+1∣∣√2−1∣∣)
ln(√2+1|√2-1|)ln(√2+1∣∣√2−1∣∣)
Step 3.3.6
√2-1√2−1 is approximately 0.414213560.41421356 which is positive so remove the absolute value
ln(√2+1√2-1)ln(√2+1√2−1)
ln(√2+1√2-1)ln(√2+1√2−1)
ln(√2+1√2-1)ln(√2+1√2−1)
Step 4
Step 4.1
Multiply √2+1√2-1√2+1√2−1 by √2+1√2+1√2+1√2+1.
ln(√2+1√2-1⋅√2+1√2+1)ln(√2+1√2−1⋅√2+1√2+1)
Step 4.2
Multiply √2+1√2-1√2+1√2−1 by √2+1√2+1√2+1√2+1.
ln((√2+1)(√2+1)(√2-1)(√2+1))ln⎛⎜⎝(√2+1)(√2+1)(√2−1)(√2+1)⎞⎟⎠
Step 4.3
Expand the denominator using the FOIL method.
ln((√2+1)(√2+1)√22+√2-√2-1)ln⎛⎜⎝(√2+1)(√2+1)√22+√2−√2−1⎞⎟⎠
Step 4.4
Simplify.
ln((√2+1)(√2+1)1)ln⎛⎜⎝(√2+1)(√2+1)1⎞⎟⎠
Step 4.5
Divide (√2+1)(√2+1)(√2+1)(√2+1) by 11.
ln((√2+1)(√2+1))ln((√2+1)(√2+1))
Step 4.6
Rewrite ln((√2+1)(√2+1))ln((√2+1)(√2+1)) as ln(√2+1)+ln(√2+1)ln(√2+1)+ln(√2+1).
ln(√2+1)+ln(√2+1)
Step 4.7
Add ln(√2+1) and ln(√2+1).
2ln(√2+1)
2ln(√2+1)
Step 5
The result can be shown in multiple forms.
Exact Form:
2ln(√2+1)
Decimal Form:
1.76274717…