Enter a problem...
Calculus Examples
∫x3-6x-4x+2dx
Step 1
Step 1.1
Let u=x+2. Find dudx.
Step 1.1.1
Differentiate x+2.
ddx[x+2]
Step 1.1.2
By the Sum Rule, the derivative of x+2 with respect to x is ddx[x]+ddx[2].
ddx[x]+ddx[2]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[2]
Step 1.1.4
Since 2 is constant with respect to x, the derivative of 2 with respect to x is 0.
1+0
Step 1.1.5
Add 1 and 0.
1
1
Step 1.2
Rewrite the problem using u and du.
∫(u-2)3-6(u-2)-4udu
∫(u-2)3-6(u-2)-4udu
Step 2
Split the fraction into multiple fractions.
∫(u-2)3u+-6(u-2)u+-4udu
Step 3
Split the single integral into multiple integrals.
∫(u-2)3udu+∫-6(u-2)udu+∫-4udu
Step 4
Step 4.1
Move the negative in front of the fraction.
∫(u-2)3udu+∫-6(u-2)udu+∫-4udu
Step 4.2
Move the negative in front of the fraction.
∫(u-2)3udu+∫-6(u-2)udu+∫-4udu
∫(u-2)3udu+∫-6(u-2)udu+∫-4udu
Step 5
Use the Binomial Theorem.
∫u3+3u2⋅-2+3u(-2)2+(-2)3udu+∫-6(u-2)udu+∫-4udu
Step 6
Step 6.1
Rewrite the exponentiation as a product.
∫u3+3u2⋅-2+3u(-2⋅-2)+(-2)3udu+∫-6(u-2)udu+∫-4udu
Step 6.2
Rewrite the exponentiation as a product.
∫u3+3u2⋅-2+3u(-2⋅-2)-2(-2)2udu+∫-6(u-2)udu+∫-4udu
Step 6.3
Rewrite the exponentiation as a product.
∫u3+3u2⋅-2+3u(-2⋅-2)-2(-2⋅-2)udu+∫-6(u-2)udu+∫-4udu
Step 6.4
Move u2.
∫u3+3⋅-2u2+3u(-2⋅-2)-2(-2⋅-2)udu+∫-6(u-2)udu+∫-4udu
Step 6.5
Move u.
∫u3+3⋅-2u2+3⋅-2⋅-2u-2(-2⋅-2)udu+∫-6(u-2)udu+∫-4udu
Step 6.6
Multiply 3 by -2.
∫u3-6u2+3⋅-2⋅-2u-2⋅-2⋅-2udu+∫-6(u-2)udu+∫-4udu
Step 6.7
Multiply 3 by -2.
∫u3-6u2-6⋅-2u-2⋅-2⋅-2udu+∫-6(u-2)udu+∫-4udu
Step 6.8
Multiply -6 by -2.
∫u3-6u2+12u-2⋅-2⋅-2udu+∫-6(u-2)udu+∫-4udu
Step 6.9
Multiply -2 by -2.
∫u3-6u2+12u+4⋅-2udu+∫-6(u-2)udu+∫-4udu
Step 6.10
Multiply 4 by -2.
∫u3-6u2+12u-8udu+∫-6(u-2)udu+∫-4udu
∫u3-6u2+12u-8udu+∫-6(u-2)udu+∫-4udu
Step 7
Step 7.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 |
Step 7.2
Divide the highest order term in the dividend u3 by the highest order term in divisor u.
u2 | |||||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 |
Step 7.3
Multiply the new quotient term by the divisor.
u2 | |||||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
+ | u3 | + | 0 |
Step 7.4
The expression needs to be subtracted from the dividend, so change all the signs in u3+0
u2 | |||||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 |
Step 7.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2 | |||||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 |
Step 7.6
Pull the next terms from the original dividend down into the current dividend.
u2 | |||||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u |
Step 7.7
Divide the highest order term in the dividend -6u2 by the highest order term in divisor u.
u2 | - | 6u | |||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u |
Step 7.8
Multiply the new quotient term by the divisor.
u2 | - | 6u | |||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
- | 6u2 | + | 0 |
Step 7.9
The expression needs to be subtracted from the dividend, so change all the signs in -6u2+0
u2 | - | 6u | |||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 |
Step 7.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2 | - | 6u | |||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u |
Step 7.11
Pull the next terms from the original dividend down into the current dividend.
u2 | - | 6u | |||||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u | - | 8 |
Step 7.12
Divide the highest order term in the dividend 12u by the highest order term in divisor u.
u2 | - | 6u | + | 12 | |||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u | - | 8 |
Step 7.13
Multiply the new quotient term by the divisor.
u2 | - | 6u | + | 12 | |||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u | - | 8 | ||||||||
+ | 12u | + | 0 |
Step 7.14
The expression needs to be subtracted from the dividend, so change all the signs in 12u+0
u2 | - | 6u | + | 12 | |||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u | - | 8 | ||||||||
- | 12u | - | 0 |
Step 7.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2 | - | 6u | + | 12 | |||||||
u | + | 0 | u3 | - | 6u2 | + | 12u | - | 8 | ||
- | u3 | - | 0 | ||||||||
- | 6u2 | + | 12u | ||||||||
+ | 6u2 | - | 0 | ||||||||
+ | 12u | - | 8 | ||||||||
- | 12u | - | 0 | ||||||||
- | 8 |
Step 7.16
The final answer is the quotient plus the remainder over the divisor.
∫u2-6u+12-8udu+∫-6(u-2)udu+∫-4udu
∫u2-6u+12-8udu+∫-6(u-2)udu+∫-4udu
Step 8
Split the single integral into multiple integrals.
∫u2du+∫-6udu+∫12du+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 9
By the Power Rule, the integral of u2 with respect to u is 13u3.
13u3+C+∫-6udu+∫12du+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 10
Since -6 is constant with respect to u, move -6 out of the integral.
13u3+C-6∫udu+∫12du+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 11
By the Power Rule, the integral of u with respect to u is 12u2.
13u3+C-6(12u2+C)+∫12du+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 12
Apply the constant rule.
13u3+C-6(12u2+C)+12u+C+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 13
Combine 12 and u2.
13u3+C-6(u22+C)+12u+C+∫-8udu+∫-6(u-2)udu+∫-4udu
Step 14
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-∫8udu+∫-6(u-2)udu+∫-4udu
Step 15
Since 8 is constant with respect to u, move 8 out of the integral.
13u3+C-6(u22+C)+12u+C-(8∫1udu)+∫-6(u-2)udu+∫-4udu
Step 16
Multiply 8 by -1.
13u3+C-6(u22+C)+12u+C-8∫1udu+∫-6(u-2)udu+∫-4udu
Step 17
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)+∫-6(u-2)udu+∫-4udu
Step 18
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-∫6(u-2)udu+∫-4udu
Step 19
Since 6 is constant with respect to u, move 6 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-(6∫u-2udu)+∫-4udu
Step 20
Multiply 6 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6∫u-2udu+∫-4udu
Step 21
Step 21.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
u | + | 0 | u | - | 2 |
Step 21.2
Divide the highest order term in the dividend u by the highest order term in divisor u.
1 | |||||||
u | + | 0 | u | - | 2 |
Step 21.3
Multiply the new quotient term by the divisor.
1 | |||||||
u | + | 0 | u | - | 2 | ||
+ | u | + | 0 |
Step 21.4
The expression needs to be subtracted from the dividend, so change all the signs in u+0
1 | |||||||
u | + | 0 | u | - | 2 | ||
- | u | - | 0 |
Step 21.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
1 | |||||||
u | + | 0 | u | - | 2 | ||
- | u | - | 0 | ||||
- | 2 |
Step 21.6
The final answer is the quotient plus the remainder over the divisor.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6∫1-2udu+∫-4udu
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6∫1-2udu+∫-4udu
Step 22
Split the single integral into multiple integrals.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(∫du+∫-2udu)+∫-4udu
Step 23
Apply the constant rule.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C+∫-2udu)+∫-4udu
Step 24
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-∫2udu)+∫-4udu
Step 25
Since 2 is constant with respect to u, move 2 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-(2∫1udu))+∫-4udu
Step 26
Multiply 2 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2∫1udu)+∫-4udu
Step 27
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))+∫-4udu
Step 28
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-∫4udu
Step 29
Since 4 is constant with respect to u, move 4 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-(4∫1udu)
Step 30
Multiply 4 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-4∫1udu
Step 31
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-4(ln(|u|)+C)
Step 32
Simplify.
u33-3u2+12u-8ln(|u|)-6u+12ln(|u|)-4ln(|u|)+C
Step 33
Reorder terms.
13u3-3u2+12u-8ln(|u|)-6u+12ln(|u|)-4ln(|u|)+C
Step 34
Step 34.1
Subtract 6u from 12u.
13u3-3u2+6u-8ln(|u|)+12ln(|u|)-4ln(|u|)+C
Step 34.2
Add -8ln(|u|) and 12ln(|u|).
13u3-3u2+6u+4ln(|u|)-4ln(|u|)+C
Step 34.3
Subtract 4ln(|u|) from 4ln(|u|).
13u3-3u2+6u+0+C
Step 34.4
Add 13u3-3u2+6u and 0.
13u3-3u2+6u+C
13u3-3u2+6u+C
Step 35
Replace all occurrences of u with x+2.
13(x+2)3-3(x+2)2+6(x+2)+C