Calculus Examples

Integrate Using u-Substitution integral of (x^3-6x-4)/(x+2) with respect to x
x3-6x-4x+2dx
Step 1
Let u=x+2. Then du=dx. Rewrite using u and du.
Tap for more steps...
Step 1.1
Let u=x+2. Find dudx.
Tap for more steps...
Step 1.1.1
Differentiate x+2.
ddx[x+2]
Step 1.1.2
By the Sum Rule, the derivative of x+2 with respect to x is ddx[x]+ddx[2].
ddx[x]+ddx[2]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[2]
Step 1.1.4
Since 2 is constant with respect to x, the derivative of 2 with respect to x is 0.
1+0
Step 1.1.5
Add 1 and 0.
1
1
Step 1.2
Rewrite the problem using u and du.
(u-2)3-6(u-2)-4udu
(u-2)3-6(u-2)-4udu
Step 2
Split the fraction into multiple fractions.
(u-2)3u+-6(u-2)u+-4udu
Step 3
Split the single integral into multiple integrals.
(u-2)3udu+-6(u-2)udu+-4udu
Step 4
Simplify.
Tap for more steps...
Step 4.1
Move the negative in front of the fraction.
(u-2)3udu+-6(u-2)udu+-4udu
Step 4.2
Move the negative in front of the fraction.
(u-2)3udu+-6(u-2)udu+-4udu
(u-2)3udu+-6(u-2)udu+-4udu
Step 5
Use the Binomial Theorem.
u3+3u2-2+3u(-2)2+(-2)3udu+-6(u-2)udu+-4udu
Step 6
Simplify the expression.
Tap for more steps...
Step 6.1
Rewrite the exponentiation as a product.
u3+3u2-2+3u(-2-2)+(-2)3udu+-6(u-2)udu+-4udu
Step 6.2
Rewrite the exponentiation as a product.
u3+3u2-2+3u(-2-2)-2(-2)2udu+-6(u-2)udu+-4udu
Step 6.3
Rewrite the exponentiation as a product.
u3+3u2-2+3u(-2-2)-2(-2-2)udu+-6(u-2)udu+-4udu
Step 6.4
Move u2.
u3+3-2u2+3u(-2-2)-2(-2-2)udu+-6(u-2)udu+-4udu
Step 6.5
Move u.
u3+3-2u2+3-2-2u-2(-2-2)udu+-6(u-2)udu+-4udu
Step 6.6
Multiply 3 by -2.
u3-6u2+3-2-2u-2-2-2udu+-6(u-2)udu+-4udu
Step 6.7
Multiply 3 by -2.
u3-6u2-6-2u-2-2-2udu+-6(u-2)udu+-4udu
Step 6.8
Multiply -6 by -2.
u3-6u2+12u-2-2-2udu+-6(u-2)udu+-4udu
Step 6.9
Multiply -2 by -2.
u3-6u2+12u+4-2udu+-6(u-2)udu+-4udu
Step 6.10
Multiply 4 by -2.
u3-6u2+12u-8udu+-6(u-2)udu+-4udu
u3-6u2+12u-8udu+-6(u-2)udu+-4udu
Step 7
Divide u3-6u2+12u-8 by u.
Tap for more steps...
Step 7.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
u+0u3-6u2+12u-8
Step 7.2
Divide the highest order term in the dividend u3 by the highest order term in divisor u.
u2
u+0u3-6u2+12u-8
Step 7.3
Multiply the new quotient term by the divisor.
u2
u+0u3-6u2+12u-8
+u3+0
Step 7.4
The expression needs to be subtracted from the dividend, so change all the signs in u3+0
u2
u+0u3-6u2+12u-8
-u3-0
Step 7.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2
u+0u3-6u2+12u-8
-u3-0
-6u2
Step 7.6
Pull the next terms from the original dividend down into the current dividend.
u2
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
Step 7.7
Divide the highest order term in the dividend -6u2 by the highest order term in divisor u.
u2-6u
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
Step 7.8
Multiply the new quotient term by the divisor.
u2-6u
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
-6u2+0
Step 7.9
The expression needs to be subtracted from the dividend, so change all the signs in -6u2+0
u2-6u
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
Step 7.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2-6u
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u
Step 7.11
Pull the next terms from the original dividend down into the current dividend.
u2-6u
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u-8
Step 7.12
Divide the highest order term in the dividend 12u by the highest order term in divisor u.
u2-6u+12
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u-8
Step 7.13
Multiply the new quotient term by the divisor.
u2-6u+12
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u-8
+12u+0
Step 7.14
The expression needs to be subtracted from the dividend, so change all the signs in 12u+0
u2-6u+12
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u-8
-12u-0
Step 7.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
u2-6u+12
u+0u3-6u2+12u-8
-u3-0
-6u2+12u
+6u2-0
+12u-8
-12u-0
-8
Step 7.16
The final answer is the quotient plus the remainder over the divisor.
u2-6u+12-8udu+-6(u-2)udu+-4udu
u2-6u+12-8udu+-6(u-2)udu+-4udu
Step 8
Split the single integral into multiple integrals.
u2du+-6udu+12du+-8udu+-6(u-2)udu+-4udu
Step 9
By the Power Rule, the integral of u2 with respect to u is 13u3.
13u3+C+-6udu+12du+-8udu+-6(u-2)udu+-4udu
Step 10
Since -6 is constant with respect to u, move -6 out of the integral.
13u3+C-6udu+12du+-8udu+-6(u-2)udu+-4udu
Step 11
By the Power Rule, the integral of u with respect to u is 12u2.
13u3+C-6(12u2+C)+12du+-8udu+-6(u-2)udu+-4udu
Step 12
Apply the constant rule.
13u3+C-6(12u2+C)+12u+C+-8udu+-6(u-2)udu+-4udu
Step 13
Combine 12 and u2.
13u3+C-6(u22+C)+12u+C+-8udu+-6(u-2)udu+-4udu
Step 14
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8udu+-6(u-2)udu+-4udu
Step 15
Since 8 is constant with respect to u, move 8 out of the integral.
13u3+C-6(u22+C)+12u+C-(81udu)+-6(u-2)udu+-4udu
Step 16
Multiply 8 by -1.
13u3+C-6(u22+C)+12u+C-81udu+-6(u-2)udu+-4udu
Step 17
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)+-6(u-2)udu+-4udu
Step 18
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u-2)udu+-4udu
Step 19
Since 6 is constant with respect to u, move 6 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-(6u-2udu)+-4udu
Step 20
Multiply 6 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6u-2udu+-4udu
Step 21
Divide u-2 by u.
Tap for more steps...
Step 21.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
u+0u-2
Step 21.2
Divide the highest order term in the dividend u by the highest order term in divisor u.
1
u+0u-2
Step 21.3
Multiply the new quotient term by the divisor.
1
u+0u-2
+u+0
Step 21.4
The expression needs to be subtracted from the dividend, so change all the signs in u+0
1
u+0u-2
-u-0
Step 21.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
1
u+0u-2
-u-0
-2
Step 21.6
The final answer is the quotient plus the remainder over the divisor.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-61-2udu+-4udu
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-61-2udu+-4udu
Step 22
Split the single integral into multiple integrals.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(du+-2udu)+-4udu
Step 23
Apply the constant rule.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C+-2udu)+-4udu
Step 24
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2udu)+-4udu
Step 25
Since 2 is constant with respect to u, move 2 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-(21udu))+-4udu
Step 26
Multiply 2 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-21udu)+-4udu
Step 27
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))+-4udu
Step 28
Since -1 is constant with respect to u, move -1 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-4udu
Step 29
Since 4 is constant with respect to u, move 4 out of the integral.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-(41udu)
Step 30
Multiply 4 by -1.
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-41udu
Step 31
The integral of 1u with respect to u is ln(|u|).
13u3+C-6(u22+C)+12u+C-8(ln(|u|)+C)-6(u+C-2(ln(|u|)+C))-4(ln(|u|)+C)
Step 32
Simplify.
u33-3u2+12u-8ln(|u|)-6u+12ln(|u|)-4ln(|u|)+C
Step 33
Reorder terms.
13u3-3u2+12u-8ln(|u|)-6u+12ln(|u|)-4ln(|u|)+C
Step 34
Simplify.
Tap for more steps...
Step 34.1
Subtract 6u from 12u.
13u3-3u2+6u-8ln(|u|)+12ln(|u|)-4ln(|u|)+C
Step 34.2
Add -8ln(|u|) and 12ln(|u|).
13u3-3u2+6u+4ln(|u|)-4ln(|u|)+C
Step 34.3
Subtract 4ln(|u|) from 4ln(|u|).
13u3-3u2+6u+0+C
Step 34.4
Add 13u3-3u2+6u and 0.
13u3-3u2+6u+C
13u3-3u2+6u+C
Step 35
Replace all occurrences of u with x+2.
13(x+2)3-3(x+2)2+6(x+2)+C
 [x2  12  π  xdx ]