Calculus Examples

Integrate Using u-Substitution integral from 2 to 3 of x/((x^2-3)^2) with respect to x
Step 1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 1.1
Let . Find .
Tap for more steps...
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5
Add and .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Raise to the power of .
Step 1.3.2
Subtract from .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Raise to the power of .
Step 1.5.2
Subtract from .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Simplify.
Tap for more steps...
Step 2.1
Multiply by .
Step 2.2
Move to the left of .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Apply basic rules of exponents.
Tap for more steps...
Step 4.1
Move out of the denominator by raising it to the power.
Step 4.2
Multiply the exponents in .
Tap for more steps...
Step 4.2.1
Apply the power rule and multiply exponents, .
Step 4.2.2
Multiply by .
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Evaluate at and at .
Step 7
Rewrite the expression using the negative exponent rule .
Step 8
One to any power is one.
Step 9
Simplify.
Tap for more steps...
Step 9.1
Write as a fraction with a common denominator.
Step 9.2
Combine the numerators over the common denominator.
Step 9.3
Add and .
Step 10
Simplify.
Tap for more steps...
Step 10.1
Multiply by .
Step 10.2
Multiply by .
Step 11
The result can be shown in multiple forms.
Exact Form:
Decimal Form: