Enter a problem...
Calculus Examples
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Let , where . Then . Note that since , is positive.
Step 3
Step 3.1
Simplify .
Step 3.1.1
Apply pythagorean identity.
Step 3.1.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2
Cancel the common factor of .
Step 3.2.1
Factor out of .
Step 3.2.2
Cancel the common factor.
Step 3.2.3
Rewrite the expression.
Step 4
Raise to the power of .
Step 5
Raise to the power of .
Step 6
Use the power rule to combine exponents.
Step 7
Add and .
Step 8
Using the Pythagorean Identity, rewrite as .
Step 9
Split the single integral into multiple integrals.
Step 10
Apply the constant rule.
Step 11
Since the derivative of is , the integral of is .
Step 12
Simplify.
Step 13
Replace all occurrences of with .