Calculus Examples

Integrate Using u-Substitution integral of square root of 1+x^2 with respect to x
1+x2dx1+x2dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Let x=tan(t)x=tan(t), where -π2tπ2π2tπ2. Then dx=sec2(t)dtdx=sec2(t)dt. Note that since -π2tπ2π2tπ2, sec2(t)sec2(t) is positive.
1+tan2(t)sec2(t)dt1+tan2(t)sec2(t)dt
Step 3
Simplify 1+tan2(t)1+tan2(t).
Tap for more steps...
Step 3.1
Rearrange terms.
tan2(t)+1sec2(t)dttan2(t)+1sec2(t)dt
Step 3.2
Apply pythagorean identity.
sec2(t)sec2(t)dtsec2(t)sec2(t)dt
Step 3.3
Pull terms out from under the radical, assuming positive real numbers.
sec(t)sec2(t)dtsec(t)sec2(t)dt
sec(t)sec2(t)dtsec(t)sec2(t)dt
Step 4
Multiply sec(t)sec(t) by sec2(t)sec2(t) by adding the exponents.
Tap for more steps...
Step 4.1
Multiply sec(t)sec(t) by sec2(t)sec2(t).
Tap for more steps...
Step 4.1.1
Raise sec(t)sec(t) to the power of 11.
sec1(t)sec2(t)dtsec1(t)sec2(t)dt
Step 4.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
sec(t)1+2dtsec(t)1+2dt
sec(t)1+2dtsec(t)1+2dt
Step 4.2
Add 11 and 22.
sec3(t)dtsec3(t)dt
sec3(t)dtsec3(t)dt
Step 5
Factor sec(t)sec(t) out of sec3(t)sec3(t).
sec(t)sec2(t)dtsec(t)sec2(t)dt
Step 6
Integrate by parts using the formula udv=uv-vduudv=uvvdu, where u=sec(t)u=sec(t) and dv=sec2(t)dv=sec2(t).
sec(t)tan(t)-tan(t)(sec(t)tan(t))dtsec(t)tan(t)tan(t)(sec(t)tan(t))dt
Step 7
Raise tan(t)tan(t) to the power of 11.
sec(t)tan(t)-tan1(t)tan(t)sec(t)dtsec(t)tan(t)tan1(t)tan(t)sec(t)dt
Step 8
Raise tan(t)tan(t) to the power of 11.
sec(t)tan(t)-tan1(t)tan1(t)sec(t)dtsec(t)tan(t)tan1(t)tan1(t)sec(t)dt
Step 9
Use the power rule aman=am+naman=am+n to combine exponents.
sec(t)tan(t)-tan(t)1+1sec(t)dtsec(t)tan(t)tan(t)1+1sec(t)dt
Step 10
Simplify the expression.
Tap for more steps...
Step 10.1
Add 11 and 11.
sec(t)tan(t)-tan2(t)sec(t)dtsec(t)tan(t)tan2(t)sec(t)dt
Step 10.2
Reorder tan2(t)tan2(t) and sec(t)sec(t).
sec(t)tan(t)-sec(t)tan2(t)dtsec(t)tan(t)sec(t)tan2(t)dt
sec(t)tan(t)-sec(t)tan2(t)dtsec(t)tan(t)sec(t)tan2(t)dt
Step 11
Using the Pythagorean Identity, rewrite tan2(t)tan2(t) as -1+sec2(t)1+sec2(t).
sec(t)tan(t)-sec(t)(-1+sec2(t))dtsec(t)tan(t)sec(t)(1+sec2(t))dt
Step 12
Simplify by multiplying through.
Tap for more steps...
Step 12.1
Rewrite the exponentiation as a product.
sec(t)tan(t)-sec(t)(-1+sec(t)sec(t))dtsec(t)tan(t)sec(t)(1+sec(t)sec(t))dt
Step 12.2
Apply the distributive property.
sec(t)tan(t)-sec(t)-1+sec(t)(sec(t)sec(t))dtsec(t)tan(t)sec(t)1+sec(t)(sec(t)sec(t))dt
Step 12.3
Reorder sec(t) and -1.
sec(t)tan(t)--1sec(t)+sec(t)(sec(t)sec(t))dt
sec(t)tan(t)--1sec(t)+sec(t)(sec(t)sec(t))dt
Step 13
Raise sec(t) to the power of 1.
sec(t)tan(t)--1sec(t)+sec1(t)sec(t)sec(t)dt
Step 14
Raise sec(t) to the power of 1.
sec(t)tan(t)--1sec(t)+sec1(t)sec1(t)sec(t)dt
Step 15
Use the power rule aman=am+n to combine exponents.
sec(t)tan(t)--1sec(t)+sec(t)1+1sec(t)dt
Step 16
Add 1 and 1.
sec(t)tan(t)--1sec(t)+sec2(t)sec(t)dt
Step 17
Raise sec(t) to the power of 1.
sec(t)tan(t)--1sec(t)+sec2(t)sec1(t)dt
Step 18
Use the power rule aman=am+n to combine exponents.
sec(t)tan(t)--1sec(t)+sec(t)2+1dt
Step 19
Add 2 and 1.
sec(t)tan(t)--1sec(t)+sec3(t)dt
Step 20
Split the single integral into multiple integrals.
sec(t)tan(t)-(-1sec(t)dt+sec3(t)dt)
Step 21
Since -1 is constant with respect to t, move -1 out of the integral.
sec(t)tan(t)-(-sec(t)dt+sec3(t)dt)
Step 22
The integral of sec(t) with respect to t is ln(|sec(t)+tan(t)|).
sec(t)tan(t)-(-(ln(|sec(t)+tan(t)|)+C)+sec3(t)dt)
Step 23
Simplify by multiplying through.
Tap for more steps...
Step 23.1
Apply the distributive property.
sec(t)tan(t)--(ln(|sec(t)+tan(t)|)+C)-sec3(t)dt
Step 23.2
Multiply -1 by -1.
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)-sec3(t)dt
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)-sec3(t)dt
Step 24
Solving for sec3(t)dt, we find that sec3(t)dt = sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)2.
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)2+C
Step 25
Multiply ln(|sec(t)+tan(t)|)+C by 1.
sec(t)tan(t)+ln(|sec(t)+tan(t)|)+C2+C
Step 26
Simplify.
12(sec(t)tan(t)+ln(|sec(t)+tan(t)|))+C
Step 27
Replace all occurrences of t with arctan(x).
12(sec(arctan(x))tan(arctan(x))+ln(|sec(arctan(x))+tan(arctan(x))|))+C
 [x2  12  π  xdx ]