Enter a problem...
Calculus Examples
∫√1+x2dx∫√1+x2dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Let x=tan(t)x=tan(t), where -π2≤t≤π2−π2≤t≤π2. Then dx=sec2(t)dtdx=sec2(t)dt. Note that since -π2≤t≤π2−π2≤t≤π2, sec2(t)sec2(t) is positive.
∫√1+tan2(t)sec2(t)dt∫√1+tan2(t)sec2(t)dt
Step 3
Step 3.1
Rearrange terms.
∫√tan2(t)+1sec2(t)dt∫√tan2(t)+1sec2(t)dt
Step 3.2
Apply pythagorean identity.
∫√sec2(t)sec2(t)dt∫√sec2(t)sec2(t)dt
Step 3.3
Pull terms out from under the radical, assuming positive real numbers.
∫sec(t)sec2(t)dt∫sec(t)sec2(t)dt
∫sec(t)sec2(t)dt∫sec(t)sec2(t)dt
Step 4
Step 4.1
Multiply sec(t)sec(t) by sec2(t)sec2(t).
Step 4.1.1
Raise sec(t)sec(t) to the power of 11.
∫sec1(t)sec2(t)dt∫sec1(t)sec2(t)dt
Step 4.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
∫sec(t)1+2dt∫sec(t)1+2dt
∫sec(t)1+2dt∫sec(t)1+2dt
Step 4.2
Add 11 and 22.
∫sec3(t)dt∫sec3(t)dt
∫sec3(t)dt∫sec3(t)dt
Step 5
Factor sec(t)sec(t) out of sec3(t)sec3(t).
∫sec(t)sec2(t)dt∫sec(t)sec2(t)dt
Step 6
Integrate by parts using the formula ∫udv=uv-∫vdu∫udv=uv−∫vdu, where u=sec(t)u=sec(t) and dv=sec2(t)dv=sec2(t).
sec(t)tan(t)-∫tan(t)(sec(t)tan(t))dtsec(t)tan(t)−∫tan(t)(sec(t)tan(t))dt
Step 7
Raise tan(t)tan(t) to the power of 11.
sec(t)tan(t)-∫tan1(t)tan(t)sec(t)dtsec(t)tan(t)−∫tan1(t)tan(t)sec(t)dt
Step 8
Raise tan(t)tan(t) to the power of 11.
sec(t)tan(t)-∫tan1(t)tan1(t)sec(t)dtsec(t)tan(t)−∫tan1(t)tan1(t)sec(t)dt
Step 9
Use the power rule aman=am+naman=am+n to combine exponents.
sec(t)tan(t)-∫tan(t)1+1sec(t)dtsec(t)tan(t)−∫tan(t)1+1sec(t)dt
Step 10
Step 10.1
Add 11 and 11.
sec(t)tan(t)-∫tan2(t)sec(t)dtsec(t)tan(t)−∫tan2(t)sec(t)dt
Step 10.2
Reorder tan2(t)tan2(t) and sec(t)sec(t).
sec(t)tan(t)-∫sec(t)tan2(t)dtsec(t)tan(t)−∫sec(t)tan2(t)dt
sec(t)tan(t)-∫sec(t)tan2(t)dtsec(t)tan(t)−∫sec(t)tan2(t)dt
Step 11
Using the Pythagorean Identity, rewrite tan2(t)tan2(t) as -1+sec2(t)−1+sec2(t).
sec(t)tan(t)-∫sec(t)(-1+sec2(t))dtsec(t)tan(t)−∫sec(t)(−1+sec2(t))dt
Step 12
Step 12.1
Rewrite the exponentiation as a product.
sec(t)tan(t)-∫sec(t)(-1+sec(t)sec(t))dtsec(t)tan(t)−∫sec(t)(−1+sec(t)sec(t))dt
Step 12.2
Apply the distributive property.
sec(t)tan(t)-∫sec(t)⋅-1+sec(t)(sec(t)sec(t))dtsec(t)tan(t)−∫sec(t)⋅−1+sec(t)(sec(t)sec(t))dt
Step 12.3
Reorder sec(t) and -1.
sec(t)tan(t)-∫-1⋅sec(t)+sec(t)(sec(t)sec(t))dt
sec(t)tan(t)-∫-1⋅sec(t)+sec(t)(sec(t)sec(t))dt
Step 13
Raise sec(t) to the power of 1.
sec(t)tan(t)-∫-1sec(t)+sec1(t)sec(t)sec(t)dt
Step 14
Raise sec(t) to the power of 1.
sec(t)tan(t)-∫-1sec(t)+sec1(t)sec1(t)sec(t)dt
Step 15
Use the power rule aman=am+n to combine exponents.
sec(t)tan(t)-∫-1sec(t)+sec(t)1+1sec(t)dt
Step 16
Add 1 and 1.
sec(t)tan(t)-∫-1sec(t)+sec2(t)sec(t)dt
Step 17
Raise sec(t) to the power of 1.
sec(t)tan(t)-∫-1sec(t)+sec2(t)sec1(t)dt
Step 18
Use the power rule aman=am+n to combine exponents.
sec(t)tan(t)-∫-1sec(t)+sec(t)2+1dt
Step 19
Add 2 and 1.
sec(t)tan(t)-∫-1sec(t)+sec3(t)dt
Step 20
Split the single integral into multiple integrals.
sec(t)tan(t)-(∫-1sec(t)dt+∫sec3(t)dt)
Step 21
Since -1 is constant with respect to t, move -1 out of the integral.
sec(t)tan(t)-(-∫sec(t)dt+∫sec3(t)dt)
Step 22
The integral of sec(t) with respect to t is ln(|sec(t)+tan(t)|).
sec(t)tan(t)-(-(ln(|sec(t)+tan(t)|)+C)+∫sec3(t)dt)
Step 23
Step 23.1
Apply the distributive property.
sec(t)tan(t)--(ln(|sec(t)+tan(t)|)+C)-∫sec3(t)dt
Step 23.2
Multiply -1 by -1.
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)-∫sec3(t)dt
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)-∫sec3(t)dt
Step 24
Solving for ∫sec3(t)dt, we find that ∫sec3(t)dt = sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)2.
sec(t)tan(t)+1(ln(|sec(t)+tan(t)|)+C)2+C
Step 25
Multiply ln(|sec(t)+tan(t)|)+C by 1.
sec(t)tan(t)+ln(|sec(t)+tan(t)|)+C2+C
Step 26
Simplify.
12(sec(t)tan(t)+ln(|sec(t)+tan(t)|))+C
Step 27
Replace all occurrences of t with arctan(x).
12(sec(arctan(x))tan(arctan(x))+ln(|sec(arctan(x))+tan(arctan(x))|))+C