Enter a problem...
Calculus Examples
∫x2e-xdx
Step 1
Step 1.1
Let u=-x. Find dudx.
Step 1.1.1
Differentiate -x.
ddx[-x]
Step 1.1.2
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
-ddx[x]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-1⋅1
Step 1.1.4
Multiply -1 by 1.
-1
-1
Step 1.2
Rewrite the problem using u and du.
∫-(-u)2eudu
∫-(-u)2eudu
Step 2
Step 2.1
Factor -1 out of -u.
∫-(-(u))2eudu
Step 2.2
Apply the product rule to -(u).
∫-((-1)2u2)eudu
Step 2.3
Raise -1 to the power of 2.
∫-(1u2)eudu
Step 2.4
Multiply u2 by 1.
∫-u2eudu
∫-u2eudu
Step 3
Since -1 is constant with respect to u, move -1 out of the integral.
-∫u2eudu
Step 4
Integrate by parts using the formula ∫wdv=wv-∫vdw, where w=u2 and dv=eu.
-(u2eu-∫eu(2u)du)
Step 5
Since 2 is constant with respect to u, move 2 out of the integral.
-(u2eu-(2∫eu(u)du))
Step 6
Multiply 2 by -1.
-(u2eu-2∫eu(u)du)
Step 7
Integrate by parts using the formula ∫wdv=wv-∫vdw, where w=u and dv=eu.
-(u2eu-2(ueu-∫eudu))
Step 8
The integral of eu with respect to u is eu.
-(u2eu-2(ueu-(eu+C)))
Step 9
Rewrite -(u2eu-2(ueu-(eu+C))) as -(u2eu-2ueu+2eu)+C.
-(u2eu-2ueu+2eu)+C
Step 10
Replace all occurrences of u with -x.
-((-x)2e-x-2(-x)e-x+2e-x)+C
Step 11
Step 11.1
Simplify each term.
Step 11.1.1
Apply the product rule to -x.
-((-1)2x2e-x-2(-x)e-x+2e-x)+C
Step 11.1.2
Raise -1 to the power of 2.
-(1x2e-x-2(-x)e-x+2e-x)+C
Step 11.1.3
Multiply x2 by 1.
-(x2e-x-2(-x)e-x+2e-x)+C
Step 11.1.4
Multiply -1 by -2.
-(x2e-x+2xe-x+2e-x)+C
-(x2e-x+2xe-x+2e-x)+C
Step 11.2
Apply the distributive property.
-(x2e-x)-(2xe-x)-(2e-x)+C
Step 11.3
Simplify.
Step 11.3.1
Multiply 2 by -1.
-x2e-x-2(xe-x)-(2e-x)+C
Step 11.3.2
Multiply 2 by -1.
-x2e-x-2(xe-x)-2e-x+C
-x2e-x-2xe-x-2e-x+C
-x2e-x-2xe-x-2e-x+C