Enter a problem...
Calculus Examples
∫x(4x-1)4dx∫x(4x−1)4dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Step 2.1
Use the Binomial Theorem.
∫x((4x)4+4(4x)3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx∫x((4x)4+4(4x)3⋅−1+6(4x)2(−1)2+4(4x)(−1)3+(−1)4)dx
Step 2.2
Simplify each term.
Step 2.2.1
Apply the product rule to 4x.
∫x(44x4+4(4x)3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.2
Raise 4 to the power of 4.
∫x(256x4+4(4x)3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.3
Apply the product rule to 4x.
∫x(256x4+4(43x3)⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.4
Multiply 4 by 43 by adding the exponents.
Step 2.2.4.1
Move 43.
∫x(256x4+43⋅4x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.4.2
Multiply 43 by 4.
Step 2.2.4.2.1
Raise 4 to the power of 1.
∫x(256x4+43⋅41x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.4.2.2
Use the power rule aman=am+n to combine exponents.
∫x(256x4+43+1x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
∫x(256x4+43+1x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.4.3
Add 3 and 1.
∫x(256x4+44x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
∫x(256x4+44x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.5
Raise 4 to the power of 4.
∫x(256x4+256x3⋅-1+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.6
Multiply -1 by 256.
∫x(256x4-256x3+6(4x)2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.7
Apply the product rule to 4x.
∫x(256x4-256x3+6(42x2)(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.8
Raise 4 to the power of 2.
∫x(256x4-256x3+6(16x2)(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.9
Multiply 16 by 6.
∫x(256x4-256x3+96x2(-1)2+4(4x)(-1)3+(-1)4)dx
Step 2.2.10
Raise -1 to the power of 2.
∫x(256x4-256x3+96x2⋅1+4(4x)(-1)3+(-1)4)dx
Step 2.2.11
Multiply 96 by 1.
∫x(256x4-256x3+96x2+4(4x)(-1)3+(-1)4)dx
Step 2.2.12
Multiply 4 by 4.
∫x(256x4-256x3+96x2+16x(-1)3+(-1)4)dx
Step 2.2.13
Raise -1 to the power of 3.
∫x(256x4-256x3+96x2+16x⋅-1+(-1)4)dx
Step 2.2.14
Multiply -1 by 16.
∫x(256x4-256x3+96x2-16x+(-1)4)dx
Step 2.2.15
Raise -1 to the power of 4.
∫x(256x4-256x3+96x2-16x+1)dx
∫x(256x4-256x3+96x2-16x+1)dx
Step 2.3
Apply the distributive property.
∫x(256x4)+x(-256x3)+x(96x2)+x(-16x)+x⋅1dx
Step 2.4
Simplify.
Step 2.4.1
Rewrite using the commutative property of multiplication.
∫256x⋅x4+x(-256x3)+x(96x2)+x(-16x)+x⋅1dx
Step 2.4.2
Rewrite using the commutative property of multiplication.
∫256x⋅x4-256x⋅x3+x(96x2)+x(-16x)+x⋅1dx
Step 2.4.3
Rewrite using the commutative property of multiplication.
∫256x⋅x4-256x⋅x3+96x⋅x2+x(-16x)+x⋅1dx
Step 2.4.4
Rewrite using the commutative property of multiplication.
∫256x⋅x4-256x⋅x3+96x⋅x2-16x⋅x+x⋅1dx
Step 2.4.5
Multiply x by 1.
∫256x⋅x4-256x⋅x3+96x⋅x2-16x⋅x+xdx
∫256x⋅x4-256x⋅x3+96x⋅x2-16x⋅x+xdx
Step 2.5
Simplify each term.
Step 2.5.1
Multiply x by x4 by adding the exponents.
Step 2.5.1.1
Move x4.
∫256(x4x)-256x⋅x3+96x⋅x2-16x⋅x+xdx
Step 2.5.1.2
Multiply x4 by x.
Step 2.5.1.2.1
Raise x to the power of 1.
∫256(x4x1)-256x⋅x3+96x⋅x2-16x⋅x+xdx
Step 2.5.1.2.2
Use the power rule aman=am+n to combine exponents.
∫256x4+1-256x⋅x3+96x⋅x2-16x⋅x+xdx
∫256x4+1-256x⋅x3+96x⋅x2-16x⋅x+xdx
Step 2.5.1.3
Add 4 and 1.
∫256x5-256x⋅x3+96x⋅x2-16x⋅x+xdx
∫256x5-256x⋅x3+96x⋅x2-16x⋅x+xdx
Step 2.5.2
Multiply x by x3 by adding the exponents.
Step 2.5.2.1
Move x3.
∫256x5-256(x3x)+96x⋅x2-16x⋅x+xdx
Step 2.5.2.2
Multiply x3 by x.
Step 2.5.2.2.1
Raise x to the power of 1.
∫256x5-256(x3x1)+96x⋅x2-16x⋅x+xdx
Step 2.5.2.2.2
Use the power rule aman=am+n to combine exponents.
∫256x5-256x3+1+96x⋅x2-16x⋅x+xdx
∫256x5-256x3+1+96x⋅x2-16x⋅x+xdx
Step 2.5.2.3
Add 3 and 1.
∫256x5-256x4+96x⋅x2-16x⋅x+xdx
∫256x5-256x4+96x⋅x2-16x⋅x+xdx
Step 2.5.3
Multiply x by x2 by adding the exponents.
Step 2.5.3.1
Move x2.
∫256x5-256x4+96(x2x)-16x⋅x+xdx
Step 2.5.3.2
Multiply x2 by x.
Step 2.5.3.2.1
Raise x to the power of 1.
∫256x5-256x4+96(x2x1)-16x⋅x+xdx
Step 2.5.3.2.2
Use the power rule aman=am+n to combine exponents.
∫256x5-256x4+96x2+1-16x⋅x+xdx
∫256x5-256x4+96x2+1-16x⋅x+xdx
Step 2.5.3.3
Add 2 and 1.
∫256x5-256x4+96x3-16x⋅x+xdx
∫256x5-256x4+96x3-16x⋅x+xdx
Step 2.5.4
Multiply x by x by adding the exponents.
Step 2.5.4.1
Move x.
∫256x5-256x4+96x3-16(x⋅x)+xdx
Step 2.5.4.2
Multiply x by x.
∫256x5-256x4+96x3-16x2+xdx
∫256x5-256x4+96x3-16x2+xdx
∫256x5-256x4+96x3-16x2+xdx
∫256x5-256x4+96x3-16x2+xdx
Step 3
Split the single integral into multiple integrals.
∫256x5dx+∫-256x4dx+∫96x3dx+∫-16x2dx+∫xdx
Step 4
Since 256 is constant with respect to x, move 256 out of the integral.
256∫x5dx+∫-256x4dx+∫96x3dx+∫-16x2dx+∫xdx
Step 5
By the Power Rule, the integral of x5 with respect to x is 16x6.
256(16x6+C)+∫-256x4dx+∫96x3dx+∫-16x2dx+∫xdx
Step 6
Since -256 is constant with respect to x, move -256 out of the integral.
256(16x6+C)-256∫x4dx+∫96x3dx+∫-16x2dx+∫xdx
Step 7
By the Power Rule, the integral of x4 with respect to x is 15x5.
256(16x6+C)-256(15x5+C)+∫96x3dx+∫-16x2dx+∫xdx
Step 8
Since 96 is constant with respect to x, move 96 out of the integral.
256(16x6+C)-256(15x5+C)+96∫x3dx+∫-16x2dx+∫xdx
Step 9
By the Power Rule, the integral of x3 with respect to x is 14x4.
256(16x6+C)-256(15x5+C)+96(14x4+C)+∫-16x2dx+∫xdx
Step 10
Since -16 is constant with respect to x, move -16 out of the integral.
256(16x6+C)-256(15x5+C)+96(14x4+C)-16∫x2dx+∫xdx
Step 11
By the Power Rule, the integral of x2 with respect to x is 13x3.
256(16x6+C)-256(15x5+C)+96(14x4+C)-16(13x3+C)+∫xdx
Step 12
By the Power Rule, the integral of x with respect to x is 12x2.
256(16x6+C)-256(15x5+C)+96(14x4+C)-16(13x3+C)+12x2+C
Step 13
Step 13.1
Simplify.
Step 13.1.1
Combine 16 and x6.
256(x66+C)-256(15x5+C)+96(14x4+C)-16(13x3+C)+12x2+C
Step 13.1.2
Combine 15 and x5.
256(x66+C)-256(x55+C)+96(14x4+C)-16(13x3+C)+12x2+C
Step 13.1.3
Combine 14 and x4.
256(x66+C)-256(x55+C)+96(x44+C)-16(13x3+C)+12x2+C
Step 13.1.4
Combine 13 and x3.
256(x66+C)-256(x55+C)+96(x44+C)-16(x33+C)+12x2+C
256(x66+C)-256(x55+C)+96(x44+C)-16(x33+C)+12x2+C
Step 13.2
Simplify.
128x63-256x55+24x4-16x33+12x2+C
128x63-256x55+24x4-16x33+12x2+C
Step 14
Reorder terms.
1283x6-2565x5+24x4-163x3+12x2+C