Calculus Examples

Integrate Using u-Substitution integral from 0 to 2 of x/((1+2x^2)^2) with respect to x
Step 1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 1.1
Let . Find .
Tap for more steps...
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate.
Tap for more steps...
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Add and .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Raising to any positive power yields .
Step 1.3.1.2
Multiply by .
Step 1.3.2
Add and .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Simplify each term.
Tap for more steps...
Step 1.5.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.5.1.1.1
Multiply by .
Tap for more steps...
Step 1.5.1.1.1.1
Raise to the power of .
Step 1.5.1.1.1.2
Use the power rule to combine exponents.
Step 1.5.1.1.2
Add and .
Step 1.5.1.2
Raise to the power of .
Step 1.5.2
Add and .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Simplify.
Tap for more steps...
Step 2.1
Multiply by .
Step 2.2
Move to the left of .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Apply basic rules of exponents.
Tap for more steps...
Step 4.1
Move out of the denominator by raising it to the power.
Step 4.2
Multiply the exponents in .
Tap for more steps...
Step 4.2.1
Apply the power rule and multiply exponents, .
Step 4.2.2
Multiply by .
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Evaluate at and at .
Step 7
Rewrite the expression using the negative exponent rule .
Step 8
One to any power is one.
Step 9
Simplify.
Tap for more steps...
Step 9.1
Write as a fraction with a common denominator.
Step 9.2
Combine the numerators over the common denominator.
Step 9.3
Add and .
Step 10
Simplify.
Tap for more steps...
Step 10.1
Multiply by .
Step 10.2
Multiply by .
Step 10.3
Cancel the common factor of and .
Tap for more steps...
Step 10.3.1
Factor out of .
Step 10.3.2
Cancel the common factors.
Tap for more steps...
Step 10.3.2.1
Factor out of .
Step 10.3.2.2
Cancel the common factor.
Step 10.3.2.3
Rewrite the expression.
Step 11
The result can be shown in multiple forms.
Exact Form:
Decimal Form: