Calculus Examples

Integrate Using u-Substitution integral of -20/( square root of 25-7x^2) with respect to x
-2025-7x2dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Move the negative in front of the fraction.
-2025-7x2dx
Step 3
Since -1 is constant with respect to x, move -1 out of the integral.
-2025-7x2dx
Step 4
Since 20 is constant with respect to x, move 20 out of the integral.
-(20125-7x2dx)
Step 5
Multiply 20 by -1.
-20125-7x2dx
Step 6
Let x=57sin(t), where -π2tπ2. Then dx=57cos(t)7dt. Note that since -π2tπ2, 57cos(t)7 is positive.
-20125-7(57sin(t))257cos(t)7dt
Step 7
Simplify terms.
Tap for more steps...
Step 7.1
Simplify 25-7(57sin(t))2.
Tap for more steps...
Step 7.1.1
Simplify each term.
Tap for more steps...
Step 7.1.1.1
Multiply 57 by 77.
-20125-7(5777sin(t))257cos(t)7dt
Step 7.1.1.2
Combine and simplify the denominator.
Tap for more steps...
Step 7.1.1.2.1
Multiply 57 by 77.
-20125-7(5777sin(t))257cos(t)7dt
Step 7.1.1.2.2
Raise 7 to the power of 1.
-20125-7(57717sin(t))257cos(t)7dt
Step 7.1.1.2.3
Raise 7 to the power of 1.
-20125-7(577171sin(t))257cos(t)7dt
Step 7.1.1.2.4
Use the power rule aman=am+n to combine exponents.
-20125-7(5771+1sin(t))257cos(t)7dt
Step 7.1.1.2.5
Add 1 and 1.
-20125-7(5772sin(t))257cos(t)7dt
Step 7.1.1.2.6
Rewrite 72 as 7.
Tap for more steps...
Step 7.1.1.2.6.1
Use nax=axn to rewrite 7 as 712.
-20125-7(57(712)2sin(t))257cos(t)7dt
Step 7.1.1.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-20125-7(577122sin(t))257cos(t)7dt
Step 7.1.1.2.6.3
Combine 12 and 2.
-20125-7(57722sin(t))257cos(t)7dt
Step 7.1.1.2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.1.1.2.6.4.1
Cancel the common factor.
-20125-7(57722sin(t))257cos(t)7dt
Step 7.1.1.2.6.4.2
Rewrite the expression.
-20125-7(5771sin(t))257cos(t)7dt
-20125-7(5771sin(t))257cos(t)7dt
Step 7.1.1.2.6.5
Evaluate the exponent.
-20125-7(577sin(t))257cos(t)7dt
-20125-7(577sin(t))257cos(t)7dt
-20125-7(577sin(t))257cos(t)7dt
Step 7.1.1.3
Combine 577 and sin(t).
-20125-7(57sin(t)7)257cos(t)7dt
Step 7.1.1.4
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 7.1.1.4.1
Apply the product rule to 57sin(t)7.
-20125-7(57sin(t))27257cos(t)7dt
Step 7.1.1.4.2
Apply the product rule to 57sin(t).
-20125-7(57)2sin2(t)7257cos(t)7dt
Step 7.1.1.4.3
Apply the product rule to 57.
-20125-75272sin2(t)7257cos(t)7dt
-20125-75272sin2(t)7257cos(t)7dt
Step 7.1.1.5
Simplify the numerator.
Tap for more steps...
Step 7.1.1.5.1
Raise 5 to the power of 2.
-20125-72572sin2(t)7257cos(t)7dt
Step 7.1.1.5.2
Rewrite 72 as 7.
Tap for more steps...
Step 7.1.1.5.2.1
Use nax=axn to rewrite 7 as 712.
-20125-725(712)2sin2(t)7257cos(t)7dt
Step 7.1.1.5.2.2
Apply the power rule and multiply exponents, (am)n=amn.
-20125-7257122sin2(t)7257cos(t)7dt
Step 7.1.1.5.2.3
Combine 12 and 2.
-20125-725722sin2(t)7257cos(t)7dt
Step 7.1.1.5.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.1.1.5.2.4.1
Cancel the common factor.
-20125-725722sin2(t)7257cos(t)7dt
Step 7.1.1.5.2.4.2
Rewrite the expression.
-20125-72571sin2(t)7257cos(t)7dt
-20125-72571sin2(t)7257cos(t)7dt
Step 7.1.1.5.2.5
Evaluate the exponent.
-20125-7257sin2(t)7257cos(t)7dt
-20125-7257sin2(t)7257cos(t)7dt
Step 7.1.1.5.3
Multiply 25 by 7.
-20125-7175sin2(t)7257cos(t)7dt
-20125-7175sin2(t)7257cos(t)7dt
Step 7.1.1.6
Raise 7 to the power of 2.
-20125-7175sin2(t)4957cos(t)7dt
Step 7.1.1.7
Cancel the common factor of 7.
Tap for more steps...
Step 7.1.1.7.1
Factor 7 out of -7.
-20125+7(-1)175sin2(t)4957cos(t)7dt
Step 7.1.1.7.2
Factor 7 out of 49.
-20125+7-1175sin2(t)7757cos(t)7dt
Step 7.1.1.7.3
Cancel the common factor.
-20125+7-1175sin2(t)7757cos(t)7dt
Step 7.1.1.7.4
Rewrite the expression.
-20125-1175sin2(t)757cos(t)7dt
-20125-1175sin2(t)757cos(t)7dt
Step 7.1.1.8
Cancel the common factor of 175 and 7.
Tap for more steps...
Step 7.1.1.8.1
Factor 7 out of 175sin2(t).
-20125-17(25sin2(t))757cos(t)7dt
Step 7.1.1.8.2
Cancel the common factors.
Tap for more steps...
Step 7.1.1.8.2.1
Factor 7 out of 7.
-20125-17(25sin2(t))7(1)57cos(t)7dt
Step 7.1.1.8.2.2
Cancel the common factor.
-20125-17(25sin2(t))7157cos(t)7dt
Step 7.1.1.8.2.3
Rewrite the expression.
-20125-125sin2(t)157cos(t)7dt
Step 7.1.1.8.2.4
Divide 25sin2(t) by 1.
-20125-1(25sin2(t))57cos(t)7dt
-20125-1(25sin2(t))57cos(t)7dt
-20125-1(25sin2(t))57cos(t)7dt
Step 7.1.1.9
Multiply 25 by -1.
-20125-25sin2(t)57cos(t)7dt
-20125-25sin2(t)57cos(t)7dt
Step 7.1.2
Factor 25 out of 25.
-20125(1)-25sin2(t)57cos(t)7dt
Step 7.1.3
Factor 25 out of -25sin2(t).
-20125(1)+25(-sin2(t))57cos(t)7dt
Step 7.1.4
Factor 25 out of 25(1)+25(-sin2(t)).
-20125(1-sin2(t))57cos(t)7dt
Step 7.1.5
Apply pythagorean identity.
-20125cos2(t)57cos(t)7dt
Step 7.1.6
Rewrite 25cos2(t) as (5cos(t))2.
-201(5cos(t))257cos(t)7dt
Step 7.1.7
Pull terms out from under the radical, assuming positive real numbers.
-2015cos(t)57cos(t)7dt
-2015cos(t)57cos(t)7dt
Step 7.2
Simplify.
Tap for more steps...
Step 7.2.1
Multiply 15cos(t) by 57cos(t)7.
-2057cos(t)5cos(t)7dt
Step 7.2.2
Multiply 7 by 5.
-2057cos(t)35cos(t)dt
Step 7.2.3
Cancel the common factor of 5 and 35.
Tap for more steps...
Step 7.2.3.1
Factor 5 out of 57cos(t).
-205(7cos(t))35cos(t)dt
Step 7.2.3.2
Cancel the common factors.
Tap for more steps...
Step 7.2.3.2.1
Factor 5 out of 35cos(t).
-205(7cos(t))5(7cos(t))dt
Step 7.2.3.2.2
Cancel the common factor.
-205(7cos(t))5(7cos(t))dt
Step 7.2.3.2.3
Rewrite the expression.
-207cos(t)7cos(t)dt
-207cos(t)7cos(t)dt
-207cos(t)7cos(t)dt
Step 7.2.4
Cancel the common factor of cos(t).
Tap for more steps...
Step 7.2.4.1
Cancel the common factor.
-207cos(t)7cos(t)dt
Step 7.2.4.2
Rewrite the expression.
-2077dt
-2077dt
-2077dt
-2077dt
Step 8
Apply the constant rule.
-20(77t+C)
Step 9
Simplify the answer.
Tap for more steps...
Step 9.1
Rewrite -20(77t+C) as -2077t+C.
-2077t+C
Step 9.2
Simplify.
Tap for more steps...
Step 9.2.1
Combine -20 and 77.
-2077t+C
Step 9.2.2
Move the negative in front of the fraction.
-2077t+C
-2077t+C
Step 9.3
Replace all occurrences of t with arcsin(7x5).
-2077arcsin(7x5)+C
Step 9.4
Reorder terms.
-2077arcsin(75x)+C
-2077arcsin(75x)+C
 [x2  12  π  xdx ]