Enter a problem...
Calculus Examples
∫-20√25-7x2dx
Step 1
This integral could not be completed using u-substitution. Mathway will use another method.
Step 2
Move the negative in front of the fraction.
∫-20√25-7x2dx
Step 3
Since -1 is constant with respect to x, move -1 out of the integral.
-∫20√25-7x2dx
Step 4
Since 20 is constant with respect to x, move 20 out of the integral.
-(20∫1√25-7x2dx)
Step 5
Multiply 20 by -1.
-20∫1√25-7x2dx
Step 6
Let x=5√7sin(t), where -π2≤t≤π2. Then dx=5√7cos(t)7dt. Note that since -π2≤t≤π2, 5√7cos(t)7 is positive.
-20∫1√25-7(5√7sin(t))2⋅5√7cos(t)7dt
Step 7
Step 7.1
Simplify √25-7(5√7sin(t))2.
Step 7.1.1
Simplify each term.
Step 7.1.1.1
Multiply 5√7 by √7√7.
-20∫1√25-7(5√7⋅√7√7sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2
Combine and simplify the denominator.
Step 7.1.1.2.1
Multiply 5√7 by √7√7.
-20∫1√25-7(5√7√7√7sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.2
Raise √7 to the power of 1.
-20∫1√25-7(5√7√71√7sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.3
Raise √7 to the power of 1.
-20∫1√25-7(5√7√71√71sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.4
Use the power rule aman=am+n to combine exponents.
-20∫1√25-7(5√7√71+1sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.5
Add 1 and 1.
-20∫1√25-7(5√7√72sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6
Rewrite √72 as 7.
Step 7.1.1.2.6.1
Use n√ax=axn to rewrite √7 as 712.
-20∫1√25-7(5√7(712)2sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
-20∫1√25-7(5√7712⋅2sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6.3
Combine 12 and 2.
-20∫1√25-7(5√7722sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6.4
Cancel the common factor of 2.
Step 7.1.1.2.6.4.1
Cancel the common factor.
-20∫1√25-7(5√7722sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6.4.2
Rewrite the expression.
-20∫1√25-7(5√771sin(t))2⋅5√7cos(t)7dt
-20∫1√25-7(5√771sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.2.6.5
Evaluate the exponent.
-20∫1√25-7(5√77sin(t))2⋅5√7cos(t)7dt
-20∫1√25-7(5√77sin(t))2⋅5√7cos(t)7dt
-20∫1√25-7(5√77sin(t))2⋅5√7cos(t)7dt
Step 7.1.1.3
Combine 5√77 and sin(t).
-20∫1√25-7(5√7sin(t)7)2⋅5√7cos(t)7dt
Step 7.1.1.4
Use the power rule (ab)n=anbn to distribute the exponent.
Step 7.1.1.4.1
Apply the product rule to 5√7sin(t)7.
-20∫1√25-7(5√7sin(t))272⋅5√7cos(t)7dt
Step 7.1.1.4.2
Apply the product rule to 5√7sin(t).
-20∫1√25-7(5√7)2sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.4.3
Apply the product rule to 5√7.
-20∫1√25-752√72sin2(t)72⋅5√7cos(t)7dt
-20∫1√25-752√72sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5
Simplify the numerator.
Step 7.1.1.5.1
Raise 5 to the power of 2.
-20∫1√25-725√72sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2
Rewrite √72 as 7.
Step 7.1.1.5.2.1
Use n√ax=axn to rewrite √7 as 712.
-20∫1√25-725(712)2sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2.2
Apply the power rule and multiply exponents, (am)n=amn.
-20∫1√25-725⋅712⋅2sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2.3
Combine 12 and 2.
-20∫1√25-725⋅722sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2.4
Cancel the common factor of 2.
Step 7.1.1.5.2.4.1
Cancel the common factor.
-20∫1√25-725⋅722sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2.4.2
Rewrite the expression.
-20∫1√25-725⋅71sin2(t)72⋅5√7cos(t)7dt
-20∫1√25-725⋅71sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.2.5
Evaluate the exponent.
-20∫1√25-725⋅7sin2(t)72⋅5√7cos(t)7dt
-20∫1√25-725⋅7sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.5.3
Multiply 25 by 7.
-20∫1√25-7175sin2(t)72⋅5√7cos(t)7dt
-20∫1√25-7175sin2(t)72⋅5√7cos(t)7dt
Step 7.1.1.6
Raise 7 to the power of 2.
-20∫1√25-7175sin2(t)49⋅5√7cos(t)7dt
Step 7.1.1.7
Cancel the common factor of 7.
Step 7.1.1.7.1
Factor 7 out of -7.
-20∫1√25+7(-1)175sin2(t)49⋅5√7cos(t)7dt
Step 7.1.1.7.2
Factor 7 out of 49.
-20∫1√25+7⋅-1175sin2(t)7⋅7⋅5√7cos(t)7dt
Step 7.1.1.7.3
Cancel the common factor.
-20∫1√25+7⋅-1175sin2(t)7⋅7⋅5√7cos(t)7dt
Step 7.1.1.7.4
Rewrite the expression.
-20∫1√25-1175sin2(t)7⋅5√7cos(t)7dt
-20∫1√25-1175sin2(t)7⋅5√7cos(t)7dt
Step 7.1.1.8
Cancel the common factor of 175 and 7.
Step 7.1.1.8.1
Factor 7 out of 175sin2(t).
-20∫1√25-17(25sin2(t))7⋅5√7cos(t)7dt
Step 7.1.1.8.2
Cancel the common factors.
Step 7.1.1.8.2.1
Factor 7 out of 7.
-20∫1√25-17(25sin2(t))7(1)⋅5√7cos(t)7dt
Step 7.1.1.8.2.2
Cancel the common factor.
-20∫1√25-17(25sin2(t))7⋅1⋅5√7cos(t)7dt
Step 7.1.1.8.2.3
Rewrite the expression.
-20∫1√25-125sin2(t)1⋅5√7cos(t)7dt
Step 7.1.1.8.2.4
Divide 25sin2(t) by 1.
-20∫1√25-1(25sin2(t))⋅5√7cos(t)7dt
-20∫1√25-1(25sin2(t))⋅5√7cos(t)7dt
-20∫1√25-1(25sin2(t))⋅5√7cos(t)7dt
Step 7.1.1.9
Multiply 25 by -1.
-20∫1√25-25sin2(t)⋅5√7cos(t)7dt
-20∫1√25-25sin2(t)⋅5√7cos(t)7dt
Step 7.1.2
Factor 25 out of 25.
-20∫1√25(1)-25sin2(t)⋅5√7cos(t)7dt
Step 7.1.3
Factor 25 out of -25sin2(t).
-20∫1√25(1)+25(-sin2(t))⋅5√7cos(t)7dt
Step 7.1.4
Factor 25 out of 25(1)+25(-sin2(t)).
-20∫1√25(1-sin2(t))⋅5√7cos(t)7dt
Step 7.1.5
Apply pythagorean identity.
-20∫1√25cos2(t)⋅5√7cos(t)7dt
Step 7.1.6
Rewrite 25cos2(t) as (5cos(t))2.
-20∫1√(5cos(t))2⋅5√7cos(t)7dt
Step 7.1.7
Pull terms out from under the radical, assuming positive real numbers.
-20∫15cos(t)⋅5√7cos(t)7dt
-20∫15cos(t)⋅5√7cos(t)7dt
Step 7.2
Simplify.
Step 7.2.1
Multiply 15cos(t) by 5√7cos(t)7.
-20∫5√7cos(t)5cos(t)⋅7dt
Step 7.2.2
Multiply 7 by 5.
-20∫5√7cos(t)35cos(t)dt
Step 7.2.3
Cancel the common factor of 5 and 35.
Step 7.2.3.1
Factor 5 out of 5√7cos(t).
-20∫5(√7cos(t))35cos(t)dt
Step 7.2.3.2
Cancel the common factors.
Step 7.2.3.2.1
Factor 5 out of 35cos(t).
-20∫5(√7cos(t))5(7cos(t))dt
Step 7.2.3.2.2
Cancel the common factor.
-20∫5(√7cos(t))5(7cos(t))dt
Step 7.2.3.2.3
Rewrite the expression.
-20∫√7cos(t)7cos(t)dt
-20∫√7cos(t)7cos(t)dt
-20∫√7cos(t)7cos(t)dt
Step 7.2.4
Cancel the common factor of cos(t).
Step 7.2.4.1
Cancel the common factor.
-20∫√7cos(t)7cos(t)dt
Step 7.2.4.2
Rewrite the expression.
-20∫√77dt
-20∫√77dt
-20∫√77dt
-20∫√77dt
Step 8
Apply the constant rule.
-20(√77t+C)
Step 9
Step 9.1
Rewrite -20(√77t+C) as -20√77t+C.
-20√77t+C
Step 9.2
Simplify.
Step 9.2.1
Combine -20 and √77.
-20√77t+C
Step 9.2.2
Move the negative in front of the fraction.
-20√77t+C
-20√77t+C
Step 9.3
Replace all occurrences of t with arcsin(√7x5).
-20√77arcsin(√7x5)+C
Step 9.4
Reorder terms.
-20√77arcsin(√75x)+C
-20√77arcsin(√75x)+C