Calculus Examples

Find the Concavity 1/3x^3-3x^2-16x
Step 1
Write as a function.
Step 2
Find the values where the second derivative is equal to .
Tap for more steps...
Step 2.1
Find the second derivative.
Tap for more steps...
Step 2.1.1
Find the first derivative.
Tap for more steps...
Step 2.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.1.2
Evaluate .
Tap for more steps...
Step 2.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2.3
Combine and .
Step 2.1.1.2.4
Combine and .
Step 2.1.1.2.5
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.2.5.1
Cancel the common factor.
Step 2.1.1.2.5.2
Divide by .
Step 2.1.1.3
Evaluate .
Tap for more steps...
Step 2.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.3.3
Multiply by .
Step 2.1.1.4
Evaluate .
Tap for more steps...
Step 2.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.4.3
Multiply by .
Step 2.1.2
Find the second derivative.
Tap for more steps...
Step 2.1.2.1
Differentiate.
Tap for more steps...
Step 2.1.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.2
Evaluate .
Tap for more steps...
Step 2.1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.2.3
Multiply by .
Step 2.1.2.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.3.2
Add and .
Step 2.1.3
The second derivative of with respect to is .
Step 2.2
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 2.2.1
Set the second derivative equal to .
Step 2.2.2
Add to both sides of the equation.
Step 2.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.2.3.1
Divide each term in by .
Step 2.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.2.3.2.1.1
Cancel the common factor.
Step 2.2.3.2.1.2
Divide by .
Step 2.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.3.1
Divide by .
Step 3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 4
Create intervals around the -values where the second derivative is zero or undefined.
Step 5
Substitute any number from the interval into the second derivative and evaluate to determine the concavity.
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 5.3
The graph is concave down on the interval because is negative.
Concave down on since is negative
Concave down on since is negative
Step 6
Substitute any number from the interval into the second derivative and evaluate to determine the concavity.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Multiply by .
Step 6.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 7
The graph is concave down when the second derivative is negative and concave up when the second derivative is positive.
Concave down on since is negative
Concave up on since is positive
Step 8