Enter a problem...
Calculus Examples
Let
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Evaluate .
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor the left side of the equation.
Step 2.2.1
Factor out of .
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Factor out of .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.2
Factor.
Step 2.2.2.1
Factor using the AC method.
Step 2.2.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2.2.1.2
Write the factored form using these integers.
Step 2.2.2.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Add to both sides of the equation.
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Multiply by by adding the exponents.
Step 4.1.2.1.1.1
Multiply by .
Step 4.1.2.1.1.1.1
Raise to the power of .
Step 4.1.2.1.1.1.2
Use the power rule to combine exponents.
Step 4.1.2.1.1.2
Add and .
Step 4.1.2.1.2
Raise to the power of .
Step 4.1.2.1.3
Raise to the power of .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.1.5
Multiply by .
Step 4.1.2.2
Simplify by adding and subtracting.
Step 4.1.2.2.1
Subtract from .
Step 4.1.2.2.2
Add and .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
One to any power is one.
Step 4.2.2.1.2
Multiply by .
Step 4.2.2.1.3
One to any power is one.
Step 4.2.2.1.4
Multiply by .
Step 4.2.2.1.5
Multiply by .
Step 4.2.2.2
Simplify by adding and subtracting.
Step 4.2.2.2.1
Subtract from .
Step 4.2.2.2.2
Add and .
Step 4.3
List all of the points.
Step 5