Calculus Examples

Evaluate the Summation 7 sum from t=4 to 9 of t^2-7t
79t=4t2-7t
Step 1
Split the summation to make the starting value of t equal to 1.
79t=4t2-7t=7(9t=1t2-7t-3t=1t2-7t)
Step 2
Evaluate 9t=1t2-7t.
Tap for more steps...
Step 2.1
Split the summation into smaller summations that fit the summation rules.
9t=1t2-7t=9t=1t2-79t=1t
Step 2.2
Evaluate 9t=1t2.
Tap for more steps...
Step 2.2.1
The formula for the summation of a polynomial with degree 2 is:
nk=1k2=n(n+1)(2n+1)6
Step 2.2.2
Substitute the values into the formula.
9(9+1)(29+1)6
Step 2.2.3
Simplify.
Tap for more steps...
Step 2.2.3.1
Cancel the common factor of 9 and 6.
Tap for more steps...
Step 2.2.3.1.1
Factor 3 out of 9(9+1)(29+1).
3(3(9+1)(29+1))6
Step 2.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.2.3.1.2.1
Factor 3 out of 6.
3(3(9+1)(29+1))3(2)
Step 2.2.3.1.2.2
Cancel the common factor.
3(3(9+1)(29+1))32
Step 2.2.3.1.2.3
Rewrite the expression.
3(9+1)(29+1)2
3(9+1)(29+1)2
3(9+1)(29+1)2
Step 2.2.3.2
Simplify the numerator.
Tap for more steps...
Step 2.2.3.2.1
Multiply 2 by 9.
3(9+1)(18+1)2
Step 2.2.3.2.2
Add 9 and 1.
310(18+1)2
Step 2.2.3.2.3
Multiply 3 by 10.
30(18+1)2
Step 2.2.3.2.4
Add 18 and 1.
30192
30192
Step 2.2.3.3
Simplify the expression.
Tap for more steps...
Step 2.2.3.3.1
Multiply 30 by 19.
5702
Step 2.2.3.3.2
Divide 570 by 2.
285
285
285
285
Step 2.3
Evaluate 79t=1t.
Tap for more steps...
Step 2.3.1
The formula for the summation of a polynomial with degree 1 is:
nk=1k=n(n+1)2
Step 2.3.2
Substitute the values into the formula and make sure to multiply by the front term.
(-7)(9(9+1)2)
Step 2.3.3
Simplify.
Tap for more steps...
Step 2.3.3.1
Add 9 and 1.
-79102
Step 2.3.3.2
Multiply 9 by 10.
-7(902)
Step 2.3.3.3
Divide 90 by 2.
-745
Step 2.3.3.4
Multiply -7 by 45.
-315
-315
-315
Step 2.4
Add the results of the summations.
285-315
Step 2.5
Subtract 315 from 285.
-30
-30
Step 3
Evaluate 3t=1t2-7t.
Tap for more steps...
Step 3.1
Expand the series for each value of t.
12-71+22-72+32-73
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Raise 1 to the power of 2.
1-71+22-72+32-73
Step 3.2.2
Multiply -7 by 1.
1-7+22-72+32-73
Step 3.2.3
Subtract 7 from 1.
-6+22-72+32-73
Step 3.2.4
Raise 2 to the power of 2.
-6+4-72+32-73
Step 3.2.5
Multiply -7 by 2.
-6+4-14+32-73
Step 3.2.6
Subtract 14 from 4.
-6-10+32-73
Step 3.2.7
Subtract 10 from -6.
-16+32-73
Step 3.2.8
Raise 3 to the power of 2.
-16+9-73
Step 3.2.9
Multiply -7 by 3.
-16+9-21
Step 3.2.10
Subtract 21 from 9.
-16-12
Step 3.2.11
Subtract 12 from -16.
-28
-28
-28
Step 4
Replace the summations with the values found.
7(-30+28)
Step 5
Simplify.
Tap for more steps...
Step 5.1
Add -30 and 28.
7-2
Step 5.2
Multiply 7 by -2.
-14
-14
 [x2  12  π  xdx ]