Calculus Examples

Evaluate the Limit limit as x approaches 3/2 of (-x-3)/(x^2+x+1)
limx32-x-3x2+x+1limx32x3x2+x+1
Step 1
Split the limit using the Limits Quotient Rule on the limit as xx approaches 3232.
limx32-x-3limx32x2+x+1limx32x3limx32x2+x+1
Step 2
Split the limit using the Sum of Limits Rule on the limit as xx approaches 3232.
-limx32x-limx323limx32x2+x+1limx32xlimx323limx32x2+x+1
Step 3
Evaluate the limit of 33 which is constant as xx approaches 3232.
-limx32x-13limx32x2+x+1limx32x13limx32x2+x+1
Step 4
Split the limit using the Sum of Limits Rule on the limit as xx approaches 3232.
-limx32x-13limx32x2+limx32x+limx321limx32x13limx32x2+limx32x+limx321
Step 5
Move the exponent 22 from x2x2 outside the limit using the Limits Power Rule.
-limx32x-13(limx32x)2+limx32x+limx321limx32x13(limx32x)2+limx32x+limx321
Step 6
Evaluate the limit of 11 which is constant as xx approaches 3232.
-limx32x-13(limx32x)2+limx32x+1limx32x13(limx32x)2+limx32x+1
Step 7
Evaluate the limits by plugging in 3232 for all occurrences of xx.
Tap for more steps...
Step 7.1
Evaluate the limit of xx by plugging in 3232 for xx.
-32-13(limx32x)2+limx32x+13213(limx32x)2+limx32x+1
Step 7.2
Evaluate the limit of xx by plugging in 3232 for xx.
-32-13(32)2+limx32x+13213(32)2+limx32x+1
Step 7.3
Evaluate the limit of xx by plugging in 3232 for xx.
-32-13(32)2+32+13213(32)2+32+1
-32-13(32)2+32+13213(32)2+32+1
Step 8
Simplify the answer.
Tap for more steps...
Step 8.1
Multiply the numerator and denominator of the fraction by 22.
Tap for more steps...
Step 8.1.1
Multiply -32-13(32)2+32+13213(32)2+32+1 by 2222.
22-32-13(32)2+32+1223213(32)2+32+1
Step 8.1.2
Combine.
2(-32-13)2((32)2+32+1)2(3213)2((32)2+32+1)
2(-32-13)2((32)2+32+1)2(3213)2((32)2+32+1)
Step 8.2
Apply the distributive property.
2(-32)+2(-13)2(32)2+2(32)+212(32)+2(13)2(32)2+2(32)+21
Step 8.3
Simplify by cancelling.
Tap for more steps...
Step 8.3.1
Cancel the common factor of 22.
Tap for more steps...
Step 8.3.1.1
Move the leading negative in -3232 into the numerator.
2(-32)+2(-13)2(32)2+2(32)+212(32)+2(13)2(32)2+2(32)+21
Step 8.3.1.2
Cancel the common factor.
2(-32)+2(-13)2(32)2+2(32)+21
Step 8.3.1.3
Rewrite the expression.
-3+2(-13)2(32)2+2(32)+21
-3+2(-13)2(32)2+2(32)+21
Step 8.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.2.1
Cancel the common factor.
-3+2(-13)2(32)2+2(32)+21
Step 8.3.2.2
Rewrite the expression.
-3+2(-13)2(32)2+3+21
-3+2(-13)2(32)2+3+21
-3+2(-13)2(32)2+3+21
Step 8.4
Simplify the numerator.
Tap for more steps...
Step 8.4.1
Multiply 2(-13).
Tap for more steps...
Step 8.4.1.1
Multiply -1 by 3.
-3+2-32(32)2+3+21
Step 8.4.1.2
Multiply 2 by -3.
-3-62(32)2+3+21
-3-62(32)2+3+21
Step 8.4.2
Subtract 6 from -3.
-92(32)2+3+21
-92(32)2+3+21
Step 8.5
Simplify the denominator.
Tap for more steps...
Step 8.5.1
Apply the product rule to 32.
-923222+3+21
Step 8.5.2
Cancel the common factor of 2.
Tap for more steps...
Step 8.5.2.1
Factor 2 out of 22.
-923222+3+21
Step 8.5.2.2
Cancel the common factor.
-923222+3+21
Step 8.5.2.3
Rewrite the expression.
-9322+3+21
-9322+3+21
Step 8.5.3
Raise 3 to the power of 2.
-992+3+21
Step 8.5.4
Multiply 2 by 1.
-992+3+2
Step 8.5.5
To write 3 as a fraction with a common denominator, multiply by 22.
-992+322+2
Step 8.5.6
Combine 3 and 22.
-992+322+2
Step 8.5.7
Combine the numerators over the common denominator.
-99+322+2
Step 8.5.8
Simplify the numerator.
Tap for more steps...
Step 8.5.8.1
Multiply 3 by 2.
-99+62+2
Step 8.5.8.2
Add 9 and 6.
-9152+2
-9152+2
Step 8.5.9
To write 2 as a fraction with a common denominator, multiply by 22.
-9152+222
Step 8.5.10
Combine 2 and 22.
-9152+222
Step 8.5.11
Combine the numerators over the common denominator.
-915+222
Step 8.5.12
Simplify the numerator.
Tap for more steps...
Step 8.5.12.1
Multiply 2 by 2.
-915+42
Step 8.5.12.2
Add 15 and 4.
-9192
-9192
-9192
Step 8.6
Multiply the numerator by the reciprocal of the denominator.
-9(219)
Step 8.7
Multiply -9(219).
Tap for more steps...
Step 8.7.1
Combine -9 and 219.
-9219
Step 8.7.2
Multiply -9 by 2.
-1819
-1819
Step 8.8
Move the negative in front of the fraction.
-1819
-1819
Step 9
The result can be shown in multiple forms.
Exact Form:
-1819
Decimal Form:
-0.94736842
 [x2  12  π  xdx ]