Enter a problem...
Calculus Examples
limx→32-x-3x2+x+1limx→32−x−3x2+x+1
Step 1
Split the limit using the Limits Quotient Rule on the limit as xx approaches 3232.
limx→32-x-3limx→32x2+x+1limx→32−x−3limx→32x2+x+1
Step 2
Split the limit using the Sum of Limits Rule on the limit as xx approaches 3232.
-limx→32x-limx→323limx→32x2+x+1−limx→32x−limx→323limx→32x2+x+1
Step 3
Evaluate the limit of 33 which is constant as xx approaches 3232.
-limx→32x-1⋅3limx→32x2+x+1−limx→32x−1⋅3limx→32x2+x+1
Step 4
Split the limit using the Sum of Limits Rule on the limit as xx approaches 3232.
-limx→32x-1⋅3limx→32x2+limx→32x+limx→321−limx→32x−1⋅3limx→32x2+limx→32x+limx→321
Step 5
Move the exponent 22 from x2x2 outside the limit using the Limits Power Rule.
-limx→32x-1⋅3(limx→32x)2+limx→32x+limx→321−limx→32x−1⋅3(limx→32x)2+limx→32x+limx→321
Step 6
Evaluate the limit of 11 which is constant as xx approaches 3232.
-limx→32x-1⋅3(limx→32x)2+limx→32x+1−limx→32x−1⋅3(limx→32x)2+limx→32x+1
Step 7
Step 7.1
Evaluate the limit of xx by plugging in 3232 for xx.
-32-1⋅3(limx→32x)2+limx→32x+1−32−1⋅3(limx→32x)2+limx→32x+1
Step 7.2
Evaluate the limit of xx by plugging in 3232 for xx.
-32-1⋅3(32)2+limx→32x+1−32−1⋅3(32)2+limx→32x+1
Step 7.3
Evaluate the limit of xx by plugging in 3232 for xx.
-32-1⋅3(32)2+32+1−32−1⋅3(32)2+32+1
-32-1⋅3(32)2+32+1−32−1⋅3(32)2+32+1
Step 8
Step 8.1
Multiply the numerator and denominator of the fraction by 22.
Step 8.1.1
Multiply -32-1⋅3(32)2+32+1−32−1⋅3(32)2+32+1 by 2222.
22⋅-32-1⋅3(32)2+32+122⋅−32−1⋅3(32)2+32+1
Step 8.1.2
Combine.
2(-32-1⋅3)2((32)2+32+1)2(−32−1⋅3)2((32)2+32+1)
2(-32-1⋅3)2((32)2+32+1)2(−32−1⋅3)2((32)2+32+1)
Step 8.2
Apply the distributive property.
2(-32)+2(-1⋅3)2(32)2+2(32)+2⋅12(−32)+2(−1⋅3)2(32)2+2(32)+2⋅1
Step 8.3
Simplify by cancelling.
Step 8.3.1
Cancel the common factor of 22.
Step 8.3.1.1
Move the leading negative in -32−32 into the numerator.
2(-32)+2(-1⋅3)2(32)2+2(32)+2⋅12(−32)+2(−1⋅3)2(32)2+2(32)+2⋅1
Step 8.3.1.2
Cancel the common factor.
2(-32)+2(-1⋅3)2(32)2+2(32)+2⋅1
Step 8.3.1.3
Rewrite the expression.
-3+2(-1⋅3)2(32)2+2(32)+2⋅1
-3+2(-1⋅3)2(32)2+2(32)+2⋅1
Step 8.3.2
Cancel the common factor of 2.
Step 8.3.2.1
Cancel the common factor.
-3+2(-1⋅3)2(32)2+2(32)+2⋅1
Step 8.3.2.2
Rewrite the expression.
-3+2(-1⋅3)2(32)2+3+2⋅1
-3+2(-1⋅3)2(32)2+3+2⋅1
-3+2(-1⋅3)2(32)2+3+2⋅1
Step 8.4
Simplify the numerator.
Step 8.4.1
Multiply 2(-1⋅3).
Step 8.4.1.1
Multiply -1 by 3.
-3+2⋅-32(32)2+3+2⋅1
Step 8.4.1.2
Multiply 2 by -3.
-3-62(32)2+3+2⋅1
-3-62(32)2+3+2⋅1
Step 8.4.2
Subtract 6 from -3.
-92(32)2+3+2⋅1
-92(32)2+3+2⋅1
Step 8.5
Simplify the denominator.
Step 8.5.1
Apply the product rule to 32.
-923222+3+2⋅1
Step 8.5.2
Cancel the common factor of 2.
Step 8.5.2.1
Factor 2 out of 22.
-92322⋅2+3+2⋅1
Step 8.5.2.2
Cancel the common factor.
-92322⋅2+3+2⋅1
Step 8.5.2.3
Rewrite the expression.
-9322+3+2⋅1
-9322+3+2⋅1
Step 8.5.3
Raise 3 to the power of 2.
-992+3+2⋅1
Step 8.5.4
Multiply 2 by 1.
-992+3+2
Step 8.5.5
To write 3 as a fraction with a common denominator, multiply by 22.
-992+3⋅22+2
Step 8.5.6
Combine 3 and 22.
-992+3⋅22+2
Step 8.5.7
Combine the numerators over the common denominator.
-99+3⋅22+2
Step 8.5.8
Simplify the numerator.
Step 8.5.8.1
Multiply 3 by 2.
-99+62+2
Step 8.5.8.2
Add 9 and 6.
-9152+2
-9152+2
Step 8.5.9
To write 2 as a fraction with a common denominator, multiply by 22.
-9152+2⋅22
Step 8.5.10
Combine 2 and 22.
-9152+2⋅22
Step 8.5.11
Combine the numerators over the common denominator.
-915+2⋅22
Step 8.5.12
Simplify the numerator.
Step 8.5.12.1
Multiply 2 by 2.
-915+42
Step 8.5.12.2
Add 15 and 4.
-9192
-9192
-9192
Step 8.6
Multiply the numerator by the reciprocal of the denominator.
-9(219)
Step 8.7
Multiply -9(219).
Step 8.7.1
Combine -9 and 219.
-9⋅219
Step 8.7.2
Multiply -9 by 2.
-1819
-1819
Step 8.8
Move the negative in front of the fraction.
-1819
-1819
Step 9
The result can be shown in multiple forms.
Exact Form:
-1819
Decimal Form:
-0.94736842…