Enter a problem...
Calculus Examples
Step 1
Simplify.
Step 2
Differentiate both sides of the equation.
Step 3
Step 3.1
Differentiate using the Product Rule which states that is where and .
Step 3.2
Differentiate.
Step 3.2.1
Differentiate using the Power Rule which states that is where .
Step 3.2.2
Multiply by .
Step 3.2.3
By the Sum Rule, the derivative of with respect to is .
Step 3.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.5
Add and .
Step 3.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Rewrite as .
Step 3.4
Reorder terms.
Step 4
Differentiate using the Power Rule which states that is where .
Step 5
Reform the equation by setting the left side equal to the right side.
Step 6
Step 6.1
Move all terms not containing to the right side of the equation.
Step 6.1.1
Add to both sides of the equation.
Step 6.1.2
Subtract from both sides of the equation.
Step 6.2
Divide each term in by and simplify.
Step 6.2.1
Divide each term in by .
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Dividing two negative values results in a positive value.
Step 6.2.2.2
Cancel the common factor of .
Step 6.2.2.2.1
Cancel the common factor.
Step 6.2.2.2.2
Divide by .
Step 6.2.3
Simplify the right side.
Step 6.2.3.1
Simplify each term.
Step 6.2.3.1.1
Cancel the common factor of .
Step 6.2.3.1.1.1
Cancel the common factor.
Step 6.2.3.1.1.2
Rewrite the expression.
Step 6.2.3.1.1.3
Move the negative one from the denominator of .
Step 6.2.3.1.2
Multiply by .
Step 6.2.3.1.3
Move the negative in front of the fraction.
Step 6.2.3.1.4
Dividing two negative values results in a positive value.
Step 7
Replace with .