Calculus Examples

Find the Antiderivative e^x*e^(x+1)
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1
Use the power rule to combine exponents.
Step 4.2
Add and .
Step 5
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 5.1
Let . Find .
Tap for more steps...
Step 5.1.1
Differentiate .
Step 5.1.2
By the Sum Rule, the derivative of with respect to is .
Step 5.1.3
Evaluate .
Tap for more steps...
Step 5.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.3.2
Differentiate using the Power Rule which states that is where .
Step 5.1.3.3
Multiply by .
Step 5.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 5.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.4.2
Add and .
Step 5.2
Rewrite the problem using and .
Step 6
Combine and .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
The integral of with respect to is .
Step 9
Simplify.
Step 10
Replace all occurrences of with .
Step 11
The answer is the antiderivative of the function .