Calculus Examples

Evaluate the Limit limit as x approaches 0 of (2+x)^(1/x)
limx0(2+x)1x
Step 1
Use the properties of logarithms to simplify the limit.
Tap for more steps...
Step 1.1
Rewrite (2+x)1x as eln((2+x)1x).
limx0eln((2+x)1x)
Step 1.2
Expand ln((2+x)1x) by moving 1x outside the logarithm.
limx0e1xln(2+x)
limx0e1xln(2+x)
Step 2
Combine 1x and ln(2+x).
limx0eln(2+x)x
Step 3
Consider the left sided limit.
limx0-eln(2+x)x
Step 4
Make a table to show the behavior of the function eln(2+x)x as x approaches 0 from the left.
xeln(2+x)x-0.10.00163103-0.010-0.0010
Step 5
As the x values approach 0, the function values approach 0. Thus, the limit of eln(2+x)x as x approaches 0 from the left is 0.
0
Step 6
Consider the right sided limit.
limx0+eln(2+x)x
Step 7
As the x values approach 0 from the right, the function values increase without bound.
Step 8
Since the left sided and right sided limits are not equal, the limit does not exist.
Does not exist
 [x2  12  π  xdx ]