Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
The derivative of with respect to is .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Combine fractions.
Step 1.2.4.1
Add and .
Step 1.2.4.2
Combine and .
Step 1.2.4.3
Combine and .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Quotient Rule which states that is where and .
Step 2.3
Differentiate.
Step 2.3.1
Differentiate using the Power Rule which states that is where .
Step 2.3.2
Multiply by .
Step 2.3.3
By the Sum Rule, the derivative of with respect to is .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6
Simplify the expression.
Step 2.3.6.1
Add and .
Step 2.3.6.2
Multiply by .
Step 2.4
Raise to the power of .
Step 2.5
Raise to the power of .
Step 2.6
Use the power rule to combine exponents.
Step 2.7
Add and .
Step 2.8
Subtract from .
Step 2.9
Combine and .
Step 2.10
Simplify.
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Simplify each term.
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate using the chain rule, which states that is where and .
Step 4.1.1.1
To apply the Chain Rule, set as .
Step 4.1.1.2
The derivative of with respect to is .
Step 4.1.1.3
Replace all occurrences of with .
Step 4.1.2
Differentiate.
Step 4.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.4
Combine fractions.
Step 4.1.2.4.1
Add and .
Step 4.1.2.4.2
Combine and .
Step 4.1.2.4.3
Combine and .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Divide by .
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify the numerator.
Step 9.1.1
Raising to any positive power yields .
Step 9.1.2
Multiply by .
Step 9.1.3
Add and .
Step 9.2
Simplify the denominator.
Step 9.2.1
Raising to any positive power yields .
Step 9.2.2
Add and .
Step 9.2.3
One to any power is one.
Step 9.3
Divide by .
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Raising to any positive power yields .
Step 11.2.2
Add and .
Step 11.2.3
The natural logarithm of is .
Step 11.2.4
The final answer is .
Step 12
These are the local extrema for .
is a local minima
Step 13