Calculus Examples

Integrate By Parts integral of e^(-theta)cos(2theta) with respect to theta
e-θcos(2θ)dθeθcos(2θ)dθ
Step 1
Reorder e-θeθ and cos(2θ)cos(2θ).
cos(2θ)e-θdθcos(2θ)eθdθ
Step 2
Integrate by parts using the formula udv=uv-vduudv=uvvdu, where u=cos(2θ)u=cos(2θ) and dv=e-θdv=eθ.
cos(2θ)(-e-θ)--e-θ(-2sin(2θ))dθcos(2θ)(eθ)eθ(2sin(2θ))dθ
Step 3
Since --22 is constant with respect to θθ, move --22 out of the integral.
cos(2θ)(-e-θ)-(--2e-θ(sin(2θ))dθ)cos(2θ)(eθ)(2eθ(sin(2θ))dθ)
Step 4
Simplify the expression.
Tap for more steps...
Step 4.1
Multiply -11 by -22.
cos(2θ)(-e-θ)-(2e-θ(sin(2θ))dθ)cos(2θ)(eθ)(2eθ(sin(2θ))dθ)
Step 4.2
Multiply 22 by -11.
cos(2θ)(-e-θ)-2e-θ(sin(2θ))dθcos(2θ)(eθ)2eθ(sin(2θ))dθ
Step 4.3
Reorder e-θeθ and sin(2θ)sin(2θ).
cos(2θ)(-e-θ)-2sin(2θ)e-θdθcos(2θ)(eθ)2sin(2θ)eθdθ
cos(2θ)(-e-θ)-2sin(2θ)e-θdθcos(2θ)(eθ)2sin(2θ)eθdθ
Step 5
Integrate by parts using the formula udv=uv-vduudv=uvvdu, where u=sin(2θ)u=sin(2θ) and dv=e-θdv=eθ.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)--e-θ(2cos(2θ))dθ)cos(2θ)(eθ)2(sin(2θ)(eθ)eθ(2cos(2θ))dθ)
Step 6
Since -1212 is constant with respect to θθ, move -1212 out of the integral.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)-(-12e-θ(cos(2θ))dθ))cos(2θ)(eθ)2(sin(2θ)(eθ)(12eθ(cos(2θ))dθ))
Step 7
Simplify by multiplying through.
Tap for more steps...
Step 7.1
Multiply -11 by 22.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)-(-2e-θ(cos(2θ))dθ))cos(2θ)(eθ)2(sin(2θ)(eθ)(2eθ(cos(2θ))dθ))
Step 7.2
Multiply -22 by -11.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)+2e-θ(cos(2θ))dθ)cos(2θ)(eθ)2(sin(2θ)(eθ)+2eθ(cos(2θ))dθ)
Step 7.3
Apply the distributive property.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ))-2(2e-θ(cos(2θ))dθ)cos(2θ)(eθ)2(sin(2θ)(eθ))2(2eθ(cos(2θ))dθ)
Step 7.4
Multiply.
Tap for more steps...
Step 7.4.1
Multiply -11 by -22.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-2(2e-θ(cos(2θ))dθ)cos(2θ)(eθ)+2(sin(2θ)(eθ))2(2eθ(cos(2θ))dθ)
Step 7.4.2
Multiply 22 by -22.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4e-θ(cos(2θ))dθcos(2θ)(eθ)+2(sin(2θ)(eθ))4eθ(cos(2θ))dθ
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4e-θ(cos(2θ))dθcos(2θ)(eθ)+2(sin(2θ)(eθ))4eθ(cos(2θ))dθ
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4e-θ(cos(2θ))dθcos(2θ)(eθ)+2(sin(2θ)(eθ))4eθ(cos(2θ))dθ
Step 8
Solving for e-θcos(2θ)dθeθcos(2θ)dθ, we find that e-θcos(2θ)dθeθcos(2θ)dθ = cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))5cos(2θ)(eθ)+2(sin(2θ)(eθ))5.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))5+Ccos(2θ)(eθ)+2(sin(2θ)(eθ))5+C
Step 9
Simplify the answer.
Tap for more steps...
Step 9.1
Rewrite cos(2θ)(-e-θ)+2sin(2θ)e-θ5+Ccos(2θ)(eθ)+2sin(2θ)eθ5+C as -cos(2θ)e-θ+2sin(2θ)e-θ5+Ccos(2θ)eθ+2sin(2θ)eθ5+C.
-cos(2θ)e-θ+2sin(2θ)e-θ5+Ccos(2θ)eθ+2sin(2θ)eθ5+C
Step 9.2
Simplify.
Tap for more steps...
Step 9.2.1
Factor e-θeθ out of -cos(2θ)e-θ+2sin(2θ)e-θcos(2θ)eθ+2sin(2θ)eθ.
Tap for more steps...
Step 9.2.1.1
Factor e-θeθ out of -cos(2θ)e-θcos(2θ)eθ.
e-θ(-cos(2θ))+2sin(2θ)e-θ5+Ceθ(cos(2θ))+2sin(2θ)eθ5+C
Step 9.2.1.2
Factor e-θeθ out of 2sin(2θ)e-θ2sin(2θ)eθ.
e-θ(-cos(2θ))+e-θ(2sin(2θ))5+Ceθ(cos(2θ))+eθ(2sin(2θ))5+C
Step 9.2.1.3
Factor e-θeθ out of e-θ(-cos(2θ))+e-θ(2sin(2θ))eθ(cos(2θ))+eθ(2sin(2θ)).
e-θ(-cos(2θ)+2sin(2θ))5+Ceθ(cos(2θ)+2sin(2θ))5+C
e-θ(-cos(2θ)+2sin(2θ))5+Ceθ(cos(2θ)+2sin(2θ))5+C
Step 9.2.2
Factor -11 out of -cos(2θ)cos(2θ).
e-θ(-(cos(2θ))+2sin(2θ))5+Ceθ((cos(2θ))+2sin(2θ))5+C
Step 9.2.3
Factor -11 out of 2sin(2θ)2sin(2θ).
e-θ(-(cos(2θ))-(-2sin(2θ)))5+Ceθ((cos(2θ))(2sin(2θ)))5+C
Step 9.2.4
Factor -11 out of -(cos(2θ))-(-2sin(2θ))(cos(2θ))(2sin(2θ)).
e-θ(-(cos(2θ)-2sin(2θ)))5+Ceθ((cos(2θ)2sin(2θ)))5+C
Step 9.2.5
Rewrite -(cos(2θ)-2sin(2θ))(cos(2θ)2sin(2θ)) as -1(cos(2θ)-2sin(2θ))1(cos(2θ)2sin(2θ)).
e-θ(-1(cos(2θ)-2sin(2θ)))5+C
Step 9.2.6
Move the negative in front of the fraction.
-15e-θ(cos(2θ)-2sin(2θ))+C
-15e-θ(cos(2θ)-2sin(2θ))+C
-15e-θ(cos(2θ)-2sin(2θ))+C
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]