Enter a problem...
Calculus Examples
∫e-θcos(2θ)dθ∫e−θcos(2θ)dθ
Step 1
Reorder e-θe−θ and cos(2θ)cos(2θ).
∫cos(2θ)e-θdθ∫cos(2θ)e−θdθ
Step 2
Integrate by parts using the formula ∫udv=uv-∫vdu∫udv=uv−∫vdu, where u=cos(2θ)u=cos(2θ) and dv=e-θdv=e−θ.
cos(2θ)(-e-θ)-∫-e-θ(-2sin(2θ))dθcos(2θ)(−e−θ)−∫−e−θ(−2sin(2θ))dθ
Step 3
Since --2−−2 is constant with respect to θθ, move --2−−2 out of the integral.
cos(2θ)(-e-θ)-(--2∫e-θ(sin(2θ))dθ)cos(2θ)(−e−θ)−(−−2∫e−θ(sin(2θ))dθ)
Step 4
Step 4.1
Multiply -1−1 by -2−2.
cos(2θ)(-e-θ)-(2∫e-θ(sin(2θ))dθ)cos(2θ)(−e−θ)−(2∫e−θ(sin(2θ))dθ)
Step 4.2
Multiply 22 by -1−1.
cos(2θ)(-e-θ)-2∫e-θ(sin(2θ))dθcos(2θ)(−e−θ)−2∫e−θ(sin(2θ))dθ
Step 4.3
Reorder e-θe−θ and sin(2θ)sin(2θ).
cos(2θ)(-e-θ)-2∫sin(2θ)e-θdθcos(2θ)(−e−θ)−2∫sin(2θ)e−θdθ
cos(2θ)(-e-θ)-2∫sin(2θ)e-θdθcos(2θ)(−e−θ)−2∫sin(2θ)e−θdθ
Step 5
Integrate by parts using the formula ∫udv=uv-∫vdu∫udv=uv−∫vdu, where u=sin(2θ)u=sin(2θ) and dv=e-θdv=e−θ.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)-∫-e-θ(2cos(2θ))dθ)cos(2θ)(−e−θ)−2(sin(2θ)(−e−θ)−∫−e−θ(2cos(2θ))dθ)
Step 6
Since -1⋅2−1⋅2 is constant with respect to θθ, move -1⋅2−1⋅2 out of the integral.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)-(-1⋅2∫e-θ(cos(2θ))dθ))cos(2θ)(−e−θ)−2(sin(2θ)(−e−θ)−(−1⋅2∫e−θ(cos(2θ))dθ))
Step 7
Step 7.1
Multiply -1−1 by 22.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)-(-2∫e-θ(cos(2θ))dθ))cos(2θ)(−e−θ)−2(sin(2θ)(−e−θ)−(−2∫e−θ(cos(2θ))dθ))
Step 7.2
Multiply -2−2 by -1−1.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ)+2∫e-θ(cos(2θ))dθ)cos(2θ)(−e−θ)−2(sin(2θ)(−e−θ)+2∫e−θ(cos(2θ))dθ)
Step 7.3
Apply the distributive property.
cos(2θ)(-e-θ)-2(sin(2θ)(-e-θ))-2(2∫e-θ(cos(2θ))dθ)cos(2θ)(−e−θ)−2(sin(2θ)(−e−θ))−2(2∫e−θ(cos(2θ))dθ)
Step 7.4
Multiply.
Step 7.4.1
Multiply -1−1 by -2−2.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-2(2∫e-θ(cos(2θ))dθ)cos(2θ)(−e−θ)+2(sin(2θ)(e−θ))−2(2∫e−θ(cos(2θ))dθ)
Step 7.4.2
Multiply 22 by -2−2.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4∫e-θ(cos(2θ))dθcos(2θ)(−e−θ)+2(sin(2θ)(e−θ))−4∫e−θ(cos(2θ))dθ
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4∫e-θ(cos(2θ))dθcos(2θ)(−e−θ)+2(sin(2θ)(e−θ))−4∫e−θ(cos(2θ))dθ
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))-4∫e-θ(cos(2θ))dθcos(2θ)(−e−θ)+2(sin(2θ)(e−θ))−4∫e−θ(cos(2θ))dθ
Step 8
Solving for ∫e-θcos(2θ)dθ∫e−θcos(2θ)dθ, we find that ∫e-θcos(2θ)dθ∫e−θcos(2θ)dθ = cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))5cos(2θ)(−e−θ)+2(sin(2θ)(e−θ))5.
cos(2θ)(-e-θ)+2(sin(2θ)(e-θ))5+Ccos(2θ)(−e−θ)+2(sin(2θ)(e−θ))5+C
Step 9
Step 9.1
Rewrite cos(2θ)(-e-θ)+2sin(2θ)e-θ5+Ccos(2θ)(−e−θ)+2sin(2θ)e−θ5+C as -cos(2θ)e-θ+2sin(2θ)e-θ5+C−cos(2θ)e−θ+2sin(2θ)e−θ5+C.
-cos(2θ)e-θ+2sin(2θ)e-θ5+C−cos(2θ)e−θ+2sin(2θ)e−θ5+C
Step 9.2
Simplify.
Step 9.2.1
Factor e-θe−θ out of -cos(2θ)e-θ+2sin(2θ)e-θ−cos(2θ)e−θ+2sin(2θ)e−θ.
Step 9.2.1.1
Factor e-θe−θ out of -cos(2θ)e-θ−cos(2θ)e−θ.
e-θ(-cos(2θ))+2sin(2θ)e-θ5+Ce−θ(−cos(2θ))+2sin(2θ)e−θ5+C
Step 9.2.1.2
Factor e-θe−θ out of 2sin(2θ)e-θ2sin(2θ)e−θ.
e-θ(-cos(2θ))+e-θ(2sin(2θ))5+Ce−θ(−cos(2θ))+e−θ(2sin(2θ))5+C
Step 9.2.1.3
Factor e-θe−θ out of e-θ(-cos(2θ))+e-θ(2sin(2θ))e−θ(−cos(2θ))+e−θ(2sin(2θ)).
e-θ(-cos(2θ)+2sin(2θ))5+Ce−θ(−cos(2θ)+2sin(2θ))5+C
e-θ(-cos(2θ)+2sin(2θ))5+Ce−θ(−cos(2θ)+2sin(2θ))5+C
Step 9.2.2
Factor -1−1 out of -cos(2θ)−cos(2θ).
e-θ(-(cos(2θ))+2sin(2θ))5+Ce−θ(−(cos(2θ))+2sin(2θ))5+C
Step 9.2.3
Factor -1−1 out of 2sin(2θ)2sin(2θ).
e-θ(-(cos(2θ))-(-2sin(2θ)))5+Ce−θ(−(cos(2θ))−(−2sin(2θ)))5+C
Step 9.2.4
Factor -1−1 out of -(cos(2θ))-(-2sin(2θ))−(cos(2θ))−(−2sin(2θ)).
e-θ(-(cos(2θ)-2sin(2θ)))5+Ce−θ(−(cos(2θ)−2sin(2θ)))5+C
Step 9.2.5
Rewrite -(cos(2θ)-2sin(2θ))−(cos(2θ)−2sin(2θ)) as -1(cos(2θ)-2sin(2θ))−1(cos(2θ)−2sin(2θ)).
e-θ(-1(cos(2θ)-2sin(2θ)))5+C
Step 9.2.6
Move the negative in front of the fraction.
-15e-θ(cos(2θ)-2sin(2θ))+C
-15e-θ(cos(2θ)-2sin(2θ))+C
-15e-θ(cos(2θ)-2sin(2θ))+C