Calculus Examples

Evaluate the Integral integral from 0 to pi/2 of 3sin(x)^2cos(x) with respect to x
Step 1
Since is constant with respect to , move out of the integral.
Step 2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.1
Let . Find .
Tap for more steps...
Step 2.1.1
Differentiate .
Step 2.1.2
The derivative of with respect to is .
Step 2.2
Substitute the lower limit in for in .
Step 2.3
The exact value of is .
Step 2.4
Substitute the upper limit in for in .
Step 2.5
The exact value of is .
Step 2.6
The values found for and will be used to evaluate the definite integral.
Step 2.7
Rewrite the problem using , , and the new limits of integration.
Step 3
By the Power Rule, the integral of with respect to is .
Step 4
Combine and .
Step 5
Substitute and simplify.
Tap for more steps...
Step 5.1
Evaluate at and at .
Step 5.2
Simplify.
Tap for more steps...
Step 5.2.1
One to any power is one.
Step 5.2.2
Raising to any positive power yields .
Step 5.2.3
Cancel the common factor of and .
Tap for more steps...
Step 5.2.3.1
Factor out of .
Step 5.2.3.2
Cancel the common factors.
Tap for more steps...
Step 5.2.3.2.1
Factor out of .
Step 5.2.3.2.2
Cancel the common factor.
Step 5.2.3.2.3
Rewrite the expression.
Step 5.2.3.2.4
Divide by .
Step 5.2.4
Multiply by .
Step 5.2.5
Add and .
Step 5.2.6
Combine and .
Step 5.2.7
Cancel the common factor of .
Tap for more steps...
Step 5.2.7.1
Cancel the common factor.
Step 5.2.7.2
Rewrite the expression.