Calculus Examples

Find the Maximum/Minimum Value x^(2/3)
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate using the Power Rule which states that is where .
Step 1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3
Combine and .
Step 1.4
Combine the numerators over the common denominator.
Step 1.5
Simplify the numerator.
Tap for more steps...
Step 1.5.1
Multiply by .
Step 1.5.2
Subtract from .
Step 1.6
Move the negative in front of the fraction.
Step 1.7
Simplify.
Tap for more steps...
Step 1.7.1
Rewrite the expression using the negative exponent rule .
Step 1.7.2
Multiply by .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Apply basic rules of exponents.
Tap for more steps...
Step 2.2.1
Rewrite as .
Step 2.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2.2
Combine and .
Step 2.2.2.3
Move the negative in front of the fraction.
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 2.4
To write as a fraction with a common denominator, multiply by .
Step 2.5
Combine and .
Step 2.6
Combine the numerators over the common denominator.
Step 2.7
Simplify the numerator.
Tap for more steps...
Step 2.7.1
Multiply by .
Step 2.7.2
Subtract from .
Step 2.8
Move the negative in front of the fraction.
Step 2.9
Combine and .
Step 2.10
Multiply by .
Step 2.11
Multiply.
Tap for more steps...
Step 2.11.1
Multiply by .
Step 2.11.2
Move to the denominator using the negative exponent rule .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
Differentiate using the Power Rule which states that is where .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Combine and .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.1.5
Simplify the numerator.
Tap for more steps...
Step 4.1.5.1
Multiply by .
Step 4.1.5.2
Subtract from .
Step 4.1.6
Move the negative in front of the fraction.
Step 4.1.7
Simplify.
Tap for more steps...
Step 4.1.7.1
Rewrite the expression using the negative exponent rule .
Step 4.1.7.2
Multiply by .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Since , there are no solutions.
No solution
No solution
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 6.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 6.1.2
Anything raised to is the base itself.
Step 6.2
Set the denominator in equal to to find where the expression is undefined.
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 6.3.2
Simplify each side of the equation.
Tap for more steps...
Step 6.3.2.1
Use to rewrite as .
Step 6.3.2.2
Simplify the left side.
Tap for more steps...
Step 6.3.2.2.1
Simplify .
Tap for more steps...
Step 6.3.2.2.1.1
Apply the product rule to .
Step 6.3.2.2.1.2
Raise to the power of .
Step 6.3.2.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 6.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 6.3.2.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.2.1.3.2.1
Cancel the common factor.
Step 6.3.2.2.1.3.2.2
Rewrite the expression.
Step 6.3.2.2.1.4
Simplify.
Step 6.3.2.3
Simplify the right side.
Tap for more steps...
Step 6.3.2.3.1
Raising to any positive power yields .
Step 6.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.3.1
Divide each term in by .
Step 6.3.3.2
Simplify the left side.
Tap for more steps...
Step 6.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.3.2.1.1
Cancel the common factor.
Step 6.3.3.2.1.2
Divide by .
Step 6.3.3.3
Simplify the right side.
Tap for more steps...
Step 6.3.3.3.1
Divide by .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify the expression.
Tap for more steps...
Step 9.1.1
Rewrite as .
Step 9.1.2
Apply the power rule and multiply exponents, .
Step 9.2
Cancel the common factor of .
Tap for more steps...
Step 9.2.1
Cancel the common factor.
Step 9.2.2
Rewrite the expression.
Step 9.3
Simplify the expression.
Tap for more steps...
Step 9.3.1
Raising to any positive power yields .
Step 9.3.2
Multiply by .
Step 9.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 9.4
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 10
Since there is at least one point with or undefined second derivative, apply the first derivative test.
Tap for more steps...
Step 10.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 10.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 10.2.1
Replace the variable with in the expression.
Step 10.2.2
The final answer is .
Step 10.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 10.3.1
Replace the variable with in the expression.
Step 10.3.2
Simplify the result.
Tap for more steps...
Step 10.3.2.1
Move to the numerator using the negative exponent rule .
Step 10.3.2.2
Multiply by by adding the exponents.
Tap for more steps...
Step 10.3.2.2.1
Multiply by .
Tap for more steps...
Step 10.3.2.2.1.1
Raise to the power of .
Step 10.3.2.2.1.2
Use the power rule to combine exponents.
Step 10.3.2.2.2
Write as a fraction with a common denominator.
Step 10.3.2.2.3
Combine the numerators over the common denominator.
Step 10.3.2.2.4
Subtract from .
Step 10.3.2.3
The final answer is .
Step 10.4
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
is a local minimum
Step 11