Calculus Examples

Find dy/dx y*2^y=x
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Rewrite as .
Step 2.4
Rewrite as .
Step 2.5
Simplify.
Tap for more steps...
Step 2.5.1
Reorder terms.
Step 2.5.2
Reorder factors in .
Step 3
Differentiate using the Power Rule which states that is where .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Simplify .
Tap for more steps...
Step 5.1.1
Rewrite using the commutative property of multiplication.
Step 5.1.2
Reorder factors in .
Step 5.2
Factor out of .
Tap for more steps...
Step 5.2.1
Factor out of .
Step 5.2.2
Factor out of .
Step 5.2.3
Factor out of .
Step 5.3
Multiply by .
Step 5.4
Multiply by .
Step 5.5
Divide each term in by and simplify.
Tap for more steps...
Step 5.5.1
Divide each term in by .
Step 5.5.2
Simplify the left side.
Tap for more steps...
Step 5.5.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.5.2.1.1
Cancel the common factor.
Step 5.5.2.1.2
Rewrite the expression.
Step 5.5.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.5.2.2.1
Cancel the common factor.
Step 5.5.2.2.2
Divide by .
Step 6
Replace with .