Enter a problem...
Calculus Examples
Step 1
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | - |
Step 1.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | - |
Step 1.3
Multiply the new quotient term by the divisor.
+ | + | - | |||||||
+ | + |
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | - | |||||||
- | - |
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | - | |||||||
- | - | ||||||||
- |
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
+ | + | - | |||||||
- | - | ||||||||
- | - |
Step 1.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||
+ | + | - | |||||||
- | - | ||||||||
- | - |
Step 1.8
Multiply the new quotient term by the divisor.
- | |||||||||
+ | + | - | |||||||
- | - | ||||||||
- | - | ||||||||
- | - |
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||
+ | + | - | |||||||
- | - | ||||||||
- | - | ||||||||
+ | + |
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||
+ | + | - | |||||||
- | - | ||||||||
- | - | ||||||||
+ | + | ||||||||
- |
Step 1.11
The final answer is the quotient plus the remainder over the divisor.
Step 2
Split the single integral into multiple integrals.
Step 3
By the Power Rule, the integral of with respect to is .
Step 4
Apply the constant rule.
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Step 6.1
Let . Find .
Step 6.1.1
Differentiate .
Step 6.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.1.3
Differentiate using the Power Rule which states that is where .
Step 6.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 6.1.5
Add and .
Step 6.2
Substitute the lower limit in for in .
Step 6.3
Add and .
Step 6.4
Substitute the upper limit in for in .
Step 6.5
Add and .
Step 6.6
The values found for and will be used to evaluate the definite integral.
Step 6.7
Rewrite the problem using , , and the new limits of integration.
Step 7
The integral of with respect to is .
Step 8
Combine and .
Step 9
Step 9.1
Evaluate at and at .
Step 9.2
Evaluate at and at .
Step 9.3
Simplify.
Step 9.3.1
Raise to the power of .
Step 9.3.2
Combine and .
Step 9.3.3
Cancel the common factor of and .
Step 9.3.3.1
Factor out of .
Step 9.3.3.2
Cancel the common factors.
Step 9.3.3.2.1
Factor out of .
Step 9.3.3.2.2
Cancel the common factor.
Step 9.3.3.2.3
Rewrite the expression.
Step 9.3.3.2.4
Divide by .
Step 9.3.4
Multiply by .
Step 9.3.5
Subtract from .
Step 9.3.6
Raising to any positive power yields .
Step 9.3.7
Multiply by .
Step 9.3.8
Multiply by .
Step 9.3.9
Add and .
Step 9.3.10
Multiply by .
Step 9.3.11
Add and .
Step 9.3.12
Subtract from .
Step 10
Use the quotient property of logarithms, .
Step 11
Step 11.1
The absolute value is the distance between a number and zero. The distance between and is .
Step 11.2
The absolute value is the distance between a number and zero. The distance between and is .
Step 11.3
Divide by .
Step 12
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 13