Enter a problem...
Calculus Examples
∫ln(x)01√4+etdt∫ln(x)01√4+etdt
Step 1
Multiply 1√4+et by √4+et√4+et.
ddx[∫ln(x)01√4+et⋅√4+et√4+etdt]
Step 2
Step 2.1
Multiply 1√4+et by √4+et√4+et.
ddx[∫ln(x)0√4+et√4+et√4+etdt]
Step 2.2
Raise √4+et to the power of 1.
ddx[∫ln(x)0√4+et√4+et1√4+etdt]
Step 2.3
Raise √4+et to the power of 1.
ddx[∫ln(x)0√4+et√4+et1√4+et1dt]
Step 2.4
Use the power rule aman=am+n to combine exponents.
ddx[∫ln(x)0√4+et√4+et1+1dt]
Step 2.5
Add 1 and 1.
ddx[∫ln(x)0√4+et√4+et2dt]
Step 2.6
Rewrite √4+et2 as 4+et.
Step 2.6.1
Use n√ax=axn to rewrite √4+et as (4+et)12.
ddx[∫ln(x)0√4+et((4+et)12)2dt]
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
ddx[∫ln(x)0√4+et(4+et)12⋅2dt]
Step 2.6.3
Combine 12 and 2.
ddx[∫ln(x)0√4+et(4+et)22dt]
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Cancel the common factor.
ddx[∫ln(x)0√4+et(4+et)22dt]
Step 2.6.4.2
Rewrite the expression.
ddx[∫ln(x)0√4+et(4+et)1dt]
ddx[∫ln(x)0√4+et(4+et)1dt]
Step 2.6.5
Simplify.
ddx[∫ln(x)0√4+et4+etdt]
ddx[∫ln(x)0√4+et4+etdt]
ddx[∫ln(x)0√4+et4+etdt]
Step 3
Take the derivative of ∫ln(x)0√4+et4+etdt with respect to x using Fundamental Theorem of Calculus and the chain rule.
ddx[ln(x)]√4+eln(x)4+eln(x)
Step 4
The derivative of ln(x) with respect to x is 1x.
1x⋅√4+eln(x)4+eln(x)
Step 5
Exponentiation and log are inverse functions.
1x⋅√4+x4+eln(x)
Step 6
Exponentiation and log are inverse functions.
1x⋅√4+x4+x
Step 7
Multiply 1x by √4+x4+x.
√4+xx(4+x)
Step 8
Step 8.1
Apply the distributive property.
√4+xx⋅4+x⋅x
Step 8.2
Combine terms.
Step 8.2.1
Move 4 to the left of x.
√4+x4⋅x+x⋅x
Step 8.2.2
Raise x to the power of 1.
√4+x4x+x1x
Step 8.2.3
Raise x to the power of 1.
√4+x4x+x1x1
Step 8.2.4
Use the power rule aman=am+n to combine exponents.
√4+x4x+x1+1
Step 8.2.5
Add 1 and 1.
√4+x4x+x2
√4+x4x+x2
Step 8.3
Reorder terms.
√4+xx2+4x
Step 8.4
Factor x out of x2+4x.
Step 8.4.1
Factor x out of x2.
√4+xx⋅x+4x
Step 8.4.2
Factor x out of 4x.
√4+xx⋅x+x⋅4
Step 8.4.3
Factor x out of x⋅x+x⋅4.
√4+xx(x+4)
√4+xx(x+4)
√4+xx(x+4)