Calculus Examples

Find the Derivative of the Integral integral from 0 to natural log of x of 1/( square root of 4+e^t) with respect to t
ln(x)014+etdtln(x)014+etdt
Step 1
Multiply 14+et by 4+et4+et.
ddx[ln(x)014+et4+et4+etdt]
Step 2
Combine and simplify the denominator.
Tap for more steps...
Step 2.1
Multiply 14+et by 4+et4+et.
ddx[ln(x)04+et4+et4+etdt]
Step 2.2
Raise 4+et to the power of 1.
ddx[ln(x)04+et4+et14+etdt]
Step 2.3
Raise 4+et to the power of 1.
ddx[ln(x)04+et4+et14+et1dt]
Step 2.4
Use the power rule aman=am+n to combine exponents.
ddx[ln(x)04+et4+et1+1dt]
Step 2.5
Add 1 and 1.
ddx[ln(x)04+et4+et2dt]
Step 2.6
Rewrite 4+et2 as 4+et.
Tap for more steps...
Step 2.6.1
Use nax=axn to rewrite 4+et as (4+et)12.
ddx[ln(x)04+et((4+et)12)2dt]
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
ddx[ln(x)04+et(4+et)122dt]
Step 2.6.3
Combine 12 and 2.
ddx[ln(x)04+et(4+et)22dt]
Step 2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
ddx[ln(x)04+et(4+et)22dt]
Step 2.6.4.2
Rewrite the expression.
ddx[ln(x)04+et(4+et)1dt]
ddx[ln(x)04+et(4+et)1dt]
Step 2.6.5
Simplify.
ddx[ln(x)04+et4+etdt]
ddx[ln(x)04+et4+etdt]
ddx[ln(x)04+et4+etdt]
Step 3
Take the derivative of ln(x)04+et4+etdt with respect to x using Fundamental Theorem of Calculus and the chain rule.
ddx[ln(x)]4+eln(x)4+eln(x)
Step 4
The derivative of ln(x) with respect to x is 1x.
1x4+eln(x)4+eln(x)
Step 5
Exponentiation and log are inverse functions.
1x4+x4+eln(x)
Step 6
Exponentiation and log are inverse functions.
1x4+x4+x
Step 7
Multiply 1x by 4+x4+x.
4+xx(4+x)
Step 8
Simplify.
Tap for more steps...
Step 8.1
Apply the distributive property.
4+xx4+xx
Step 8.2
Combine terms.
Tap for more steps...
Step 8.2.1
Move 4 to the left of x.
4+x4x+xx
Step 8.2.2
Raise x to the power of 1.
4+x4x+x1x
Step 8.2.3
Raise x to the power of 1.
4+x4x+x1x1
Step 8.2.4
Use the power rule aman=am+n to combine exponents.
4+x4x+x1+1
Step 8.2.5
Add 1 and 1.
4+x4x+x2
4+x4x+x2
Step 8.3
Reorder terms.
4+xx2+4x
Step 8.4
Factor x out of x2+4x.
Tap for more steps...
Step 8.4.1
Factor x out of x2.
4+xxx+4x
Step 8.4.2
Factor x out of 4x.
4+xxx+x4
Step 8.4.3
Factor x out of xx+x4.
4+xx(x+4)
4+xx(x+4)
4+xx(x+4)
 [x2  12  π  xdx ]