Enter a problem...
Calculus Examples
∫(3x2+4x+12x)dx∫(3x2+4x+12x)dx
Step 1
Remove parentheses.
∫3x2+4x+12xdx∫3x2+4x+12xdx
Step 2
Since 1212 is constant with respect to xx, move 1212 out of the integral.
12∫3x2+4x+1xdx12∫3x2+4x+1xdx
Step 3
Step 3.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 |
Step 3.2
Divide the highest order term in the dividend 3x23x2 by the highest order term in divisor xx.
3x3x | |||||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 |
Step 3.3
Multiply the new quotient term by the divisor.
3x3x | |||||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
+ | 3x23x2 | + | 00 |
Step 3.4
The expression needs to be subtracted from the dividend, so change all the signs in 3x2+03x2+0
3x3x | |||||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 |
Step 3.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x3x | |||||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x |
Step 3.6
Pull the next terms from the original dividend down into the current dividend.
3x3x | |||||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x | + | 11 |
Step 3.7
Divide the highest order term in the dividend 4x4x by the highest order term in divisor xx.
3x3x | + | 44 | |||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x | + | 11 |
Step 3.8
Multiply the new quotient term by the divisor.
3x3x | + | 44 | |||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x | + | 11 | ||||||
+ | 4x4x | + | 00 |
Step 3.9
The expression needs to be subtracted from the dividend, so change all the signs in 4x+04x+0
3x3x | + | 44 | |||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x | + | 11 | ||||||
- | 4x4x | - | 00 |
Step 3.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x3x | + | 44 | |||||||
xx | + | 00 | 3x23x2 | + | 4x4x | + | 11 | ||
- | 3x23x2 | - | 00 | ||||||
+ | 4x4x | + | 11 | ||||||
- | 4x | - | 0 | ||||||
+ | 1 |
Step 3.11
The final answer is the quotient plus the remainder over the divisor.
12∫3x+4+1xdx
12∫3x+4+1xdx
Step 4
Split the single integral into multiple integrals.
12(∫3xdx+∫4dx+∫1xdx)
Step 5
Since 3 is constant with respect to x, move 3 out of the integral.
12(3∫xdx+∫4dx+∫1xdx)
Step 6
By the Power Rule, the integral of x with respect to x is 12x2.
12(3(12x2+C)+∫4dx+∫1xdx)
Step 7
Apply the constant rule.
12(3(12x2+C)+4x+C+∫1xdx)
Step 8
Combine 12 and x2.
12(3(x22+C)+4x+C+∫1xdx)
Step 9
The integral of 1x with respect to x is ln(|x|).
12(3(x22+C)+4x+C+ln(|x|)+C)
Step 10
Step 10.1
Simplify.
12(3x22+4x+ln(|x|))+C
Step 10.2
Reorder terms.
12(32x2+4x+ln(|x|))+C
12(32x2+4x+ln(|x|))+C