Enter a problem...
Calculus Examples
Step 1
Step 1.1
Combine and .
Step 1.2
Combine and .
Step 2
Step 2.1
Let . Find .
Step 2.1.1
Differentiate .
Step 2.1.2
Differentiate using the chain rule, which states that is where and .
Step 2.1.2.1
To apply the Chain Rule, set as .
Step 2.1.2.2
The derivative of with respect to is .
Step 2.1.2.3
Replace all occurrences of with .
Step 2.1.3
Differentiate using the Power Rule.
Step 2.1.3.1
Rewrite as .
Step 2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.4
Simplify.
Step 2.1.4.1
Rewrite the expression using the negative exponent rule .
Step 2.1.4.2
Combine and .
Step 2.2
Rewrite the problem using and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
Rewrite as .
Step 6
Replace all occurrences of with .