Calculus Examples

Find the Derivative - d/dx (1- natural log of x)/(x^2)
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Differentiate.
Tap for more steps...
Step 2.1
Multiply the exponents in .
Tap for more steps...
Step 2.1.1
Apply the power rule and multiply exponents, .
Step 2.1.2
Multiply by .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Add and .
Step 2.5
Since is constant with respect to , the derivative of with respect to is .
Step 3
The derivative of with respect to is .
Step 4
Differentiate using the Power Rule.
Tap for more steps...
Step 4.1
Combine and .
Step 4.2
Cancel the common factor of and .
Tap for more steps...
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factors.
Tap for more steps...
Step 4.2.2.1
Raise to the power of .
Step 4.2.2.2
Factor out of .
Step 4.2.2.3
Cancel the common factor.
Step 4.2.2.4
Rewrite the expression.
Step 4.2.2.5
Divide by .
Step 4.3
Differentiate using the Power Rule which states that is where .
Step 4.4
Simplify with factoring out.
Tap for more steps...
Step 4.4.1
Multiply by .
Step 4.4.2
Factor out of .
Tap for more steps...
Step 4.4.2.1
Factor out of .
Step 4.4.2.2
Factor out of .
Step 4.4.2.3
Factor out of .
Step 5
Cancel the common factors.
Tap for more steps...
Step 5.1
Factor out of .
Step 5.2
Cancel the common factor.
Step 5.3
Rewrite the expression.
Step 6
Simplify.
Tap for more steps...
Step 6.1
Apply the distributive property.
Step 6.2
Simplify the numerator.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply by .
Step 6.2.1.2
Multiply .
Tap for more steps...
Step 6.2.1.2.1
Multiply by .
Step 6.2.1.2.2
Simplify by moving inside the logarithm.
Step 6.2.2
Subtract from .
Step 6.3
Rewrite as .
Step 6.4
Factor out of .
Step 6.5
Factor out of .
Step 6.6
Move the negative in front of the fraction.