Calculus Examples

Find the Third Derivative f(x)=4/3-1/2x^-1+1/4x^4+1/2x^3
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.2.4
Multiply by .
Step 1.2.5
Combine and .
Step 1.2.6
Move to the denominator using the negative exponent rule .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Combine and .
Step 1.3.4
Combine and .
Step 1.3.5
Cancel the common factor of .
Tap for more steps...
Step 1.3.5.1
Cancel the common factor.
Step 1.3.5.2
Divide by .
Step 1.4
Evaluate .
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Combine and .
Step 1.4.4
Combine and .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Add and .
Step 1.5.2
Reorder terms.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Combine and .
Step 2.2.4
Multiply by .
Step 2.2.5
Combine and .
Step 2.2.6
Cancel the common factor of and .
Tap for more steps...
Step 2.2.6.1
Factor out of .
Step 2.2.6.2
Cancel the common factors.
Tap for more steps...
Step 2.2.6.2.1
Factor out of .
Step 2.2.6.2.2
Cancel the common factor.
Step 2.2.6.2.3
Rewrite the expression.
Step 2.2.6.2.4
Divide by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Rewrite as .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply the exponents in .
Tap for more steps...
Step 2.3.5.1
Apply the power rule and multiply exponents, .
Step 2.3.5.2
Multiply by .
Step 2.3.6
Multiply by .
Step 2.3.7
Raise to the power of .
Step 2.3.8
Use the power rule to combine exponents.
Step 2.3.9
Subtract from .
Step 2.3.10
Combine and .
Step 2.3.11
Combine and .
Step 2.3.12
Move to the denominator using the negative exponent rule .
Step 2.3.13
Cancel the common factor of and .
Tap for more steps...
Step 2.3.13.1
Factor out of .
Step 2.3.13.2
Cancel the common factors.
Tap for more steps...
Step 2.3.13.2.1
Factor out of .
Step 2.3.13.2.2
Cancel the common factor.
Step 2.3.13.2.3
Rewrite the expression.
Step 2.3.14
Move the negative in front of the fraction.
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Multiply by .
Step 3.4
Evaluate .
Tap for more steps...
Step 3.4.1
Differentiate using the Product Rule which states that is where and .
Step 3.4.2
Rewrite as .
Step 3.4.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.4.3.1
To apply the Chain Rule, set as .
Step 3.4.3.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3.3
Replace all occurrences of with .
Step 3.4.4
Differentiate using the Power Rule which states that is where .
Step 3.4.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.6
Multiply the exponents in .
Tap for more steps...
Step 3.4.6.1
Apply the power rule and multiply exponents, .
Step 3.4.6.2
Multiply by .
Step 3.4.7
Multiply by .
Step 3.4.8
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.8.1
Move .
Step 3.4.8.2
Use the power rule to combine exponents.
Step 3.4.8.3
Subtract from .
Step 3.4.9
Multiply by .
Step 3.4.10
Multiply by .
Step 3.4.11
Add and .
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
Rewrite the expression using the negative exponent rule .
Step 3.5.2
Combine and .
Step 3.5.3
Reorder terms.
Step 4
The third derivative of with respect to is .