Calculus Examples

Evaluate the Limit limit as x approaches infinity of (x^2+5)/(x(2x^2+3))
Step 1
Simplify.
Tap for more steps...
Step 1.1
Apply the distributive property.
Step 1.2
Rewrite using the commutative property of multiplication.
Step 1.3
Move to the left of .
Step 1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.1
Move .
Step 1.4.2
Multiply by .
Tap for more steps...
Step 1.4.2.1
Raise to the power of .
Step 1.4.2.2
Use the power rule to combine exponents.
Step 1.4.3
Add and .
Step 2
Divide the numerator and denominator by the highest power of in the denominator, which is .
Step 3
Evaluate the limit.
Tap for more steps...
Step 3.1
Cancel the common factor of and .
Tap for more steps...
Step 3.1.1
Multiply by .
Step 3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.1
Factor out of .
Step 3.1.2.2
Cancel the common factor.
Step 3.1.2.3
Rewrite the expression.
Step 3.2
Simplify each term.
Tap for more steps...
Step 3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.2.2
Cancel the common factor of and .
Tap for more steps...
Step 3.2.2.1
Factor out of .
Step 3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 3.2.2.2.1
Factor out of .
Step 3.2.2.2.2
Cancel the common factor.
Step 3.2.2.2.3
Rewrite the expression.
Step 3.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 3.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 5
Move the term outside of the limit because it is constant with respect to .
Step 6
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 7
Evaluate the limit.
Tap for more steps...
Step 7.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 7.2
Evaluate the limit of which is constant as approaches .
Step 7.3
Move the term outside of the limit because it is constant with respect to .
Step 8
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 9
Simplify the answer.
Tap for more steps...
Step 9.1
Simplify the numerator.
Tap for more steps...
Step 9.1.1
Multiply by .
Step 9.1.2
Add and .
Step 9.2
Simplify the denominator.
Tap for more steps...
Step 9.2.1
Multiply by .
Step 9.2.2
Add and .
Step 9.3
Divide by .