Calculus Examples

Find the Linearization at t(x)=x³-5x²-9x+45 t(x)=x^3-5x^2-9x+45 , x-5
t(x)=x3-5x2-9x+45t(x)=x35x29x+45 , x-5x5
Step 1
Consider the function used to find the linearization at aa.
L(x)=f(a)+f(a)(x-a)
Step 2
Substitute the value of a=x3-5x2-9x+45 into the linearization function.
L(x)=f(x3-5x2-9x+45)+f(x3-5x2-9x+45)(x-x3-5x2-9x+45)
Step 3
Evaluate f(x3-5x2-9x+45).
Tap for more steps...
Step 3.1
Replace the variable x with x3-5x2-9x+45 in the expression.
f(x3-5x2-9x+45)=(x3-5x2-9x+45)-5
Step 3.2
Simplify (x3-5x2-9x+45)-5.
Tap for more steps...
Step 3.2.1
Remove parentheses.
(x3-5x2-9x+45)-5
Step 3.2.2
Subtract 5 from 45.
x3-5x2-9x+40
x3-5x2-9x+40
x3-5x2-9x+40
Step 4
Find the derivative of f(x)=x-5.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of x-5 with respect to x is ddx[x]+ddx[-5].
ddx[x]+ddx[-5]
Step 4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[-5]
Step 4.3
Since -5 is constant with respect to x, the derivative of -5 with respect to x is 0.
1+0
Step 4.4
Add 1 and 0.
1
1
Step 5
Substitute the components into the linearization function in order to find the linearization at a.
L(x)=x3-5x2-9x+40+1(x-x3-5x2-9x+45)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify each term.
Tap for more steps...
Step 6.1.1
Multiply x-x3-5x2-9x+45 by 1.
L(x)=x3-5x2-9x+40+x-x3-5x2-9x+45
Step 6.1.2
Subtract 9x from x.
L(x)=x3-5x2-9x+40-x3-5x2-8x+45
L(x)=x3-5x2-9x+40-x3-5x2-8x+45
Step 6.2
Simplify by adding terms.
Tap for more steps...
Step 6.2.1
Combine the opposite terms in x3-5x2-9x+40-x3-5x2-8x+45.
Tap for more steps...
Step 6.2.1.1
Subtract x3 from x3.
L(x)=-5x2-9x+40+0-5x2-8x+45
Step 6.2.1.2
Add -5x2-9x+40 and 0.
L(x)=-5x2-9x+40-5x2-8x+45
L(x)=-5x2-9x+40-5x2-8x+45
Step 6.2.2
Subtract 5x2 from -5x2.
L(x)=-10x2-9x+40-8x+45
Step 6.2.3
Subtract 8x from -9x.
L(x)=-10x2-17x+40+45
Step 6.2.4
Add 40 and 45.
L(x)=-10x2-17x+85
L(x)=-10x2-17x+85
L(x)=-10x2-17x+85
Step 7
 [x2  12  π  xdx ]