Calculus Examples

Evaluate the Limit limit as x approaches 0 of (1+arctan(x))^(1/x)
Step 1
Use the properties of logarithms to simplify the limit.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand by moving outside the logarithm.
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the limit into the exponent.
Step 2.2
Combine and .
Step 3
Apply L'Hospital's rule.
Tap for more steps...
Step 3.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 3.1.1
Take the limit of the numerator and the limit of the denominator.
Step 3.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 3.1.2.1
Move the limit inside the logarithm.
Step 3.1.2.2
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 3.1.2.3
Evaluate the limit of which is constant as approaches .
Step 3.1.2.4
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 3.1.2.4.1
Evaluate the limit of by plugging in for .
Step 3.1.2.4.2
The exact value of is .
Step 3.1.2.5
Simplify the answer.
Tap for more steps...
Step 3.1.2.5.1
Add and .
Step 3.1.2.5.2
The natural logarithm of is .
Step 3.1.3
Evaluate the limit of by plugging in for .
Step 3.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 3.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 3.3.1
Differentiate the numerator and denominator.
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
The derivative of with respect to is .
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
By the Sum Rule, the derivative of with respect to is .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.5
Add and .
Step 3.3.6
The derivative of with respect to is .
Step 3.3.7
Multiply by .
Step 3.3.8
Differentiate using the Power Rule which states that is where .
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
Step 3.5
Multiply by .
Step 4
Evaluate the limit.
Tap for more steps...
Step 4.1
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 4.2
Evaluate the limit of which is constant as approaches .
Step 4.3
Split the limit using the Product of Limits Rule on the limit as approaches .
Step 4.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4.5
Evaluate the limit of which is constant as approaches .
Step 4.6
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4.7
Evaluate the limit of which is constant as approaches .
Step 4.8
Move the exponent from outside the limit using the Limits Power Rule.
Step 5
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 5.1
Evaluate the limit of by plugging in for .
Step 5.2
The exact value of is .
Step 5.3
Evaluate the limit of by plugging in for .
Step 6
Simplify the answer.
Tap for more steps...
Step 6.1
Simplify the denominator.
Tap for more steps...
Step 6.1.1
Add and .
Step 6.1.2
Multiply by .
Step 6.1.3
Raising to any positive power yields .
Step 6.1.4
Add and .
Step 6.2
Divide by .
Step 6.3
Simplify.
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: