Enter a problem...
Calculus Examples
sin(x2)3xsin(x2)3x
Step 1
Since 1313 is constant with respect to xx, the derivative of sin(x2)3xsin(x2)3x with respect to xx is 13ddx[sin(x2)x]13ddx[sin(x2)x].
13ddx[sin(x2)x]13ddx[sin(x2)x]
Step 2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=sin(x2)f(x)=sin(x2) and g(x)=xg(x)=x.
13⋅xddx[sin(x2)]-sin(x2)ddx[x]x213⋅xddx[sin(x2)]−sin(x2)ddx[x]x2
Step 3
Step 3.1
To apply the Chain Rule, set u as x2.
13⋅x(ddu[sin(u)]ddx[x2])-sin(x2)ddx[x]x2
Step 3.2
The derivative of sin(u) with respect to u is cos(u).
13⋅x(cos(u)ddx[x2])-sin(x2)ddx[x]x2
Step 3.3
Replace all occurrences of u with x2.
13⋅x(cos(x2)ddx[x2])-sin(x2)ddx[x]x2
13⋅x(cos(x2)ddx[x2])-sin(x2)ddx[x]x2
Step 4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
13⋅x(cos(x2)(2x))-sin(x2)ddx[x]x2
Step 5
Raise x to the power of 1.
13⋅x1x(cos(x2)⋅(2))-sin(x2)ddx[x]x2
Step 6
Raise x to the power of 1.
13⋅x1x1(cos(x2)⋅(2))-sin(x2)ddx[x]x2
Step 7
Use the power rule aman=am+n to combine exponents.
13⋅x1+1(cos(x2)⋅(2))-sin(x2)ddx[x]x2
Step 8
Step 8.1
Add 1 and 1.
13⋅x2(cos(x2)⋅(2))-sin(x2)ddx[x]x2
Step 8.2
Move 2 to the left of cos(x2).
13⋅x2(2⋅cos(x2))-sin(x2)ddx[x]x2
13⋅x2(2⋅cos(x2))-sin(x2)ddx[x]x2
Step 9
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
13⋅x2(2cos(x2))-sin(x2)⋅1x2
Step 10
Step 10.1
Multiply -1 by 1.
13⋅x2(2cos(x2))-sin(x2)x2
Step 10.2
Multiply 13 by x2(2cos(x2))-sin(x2)x2.
x2(2cos(x2))-sin(x2)3x2
Step 10.3
Rewrite using the commutative property of multiplication.
2x2cos(x2)-sin(x2)3x2
2x2cos(x2)-sin(x2)3x2