Calculus Examples

Find the Third Derivative y=1/2+1/3x^5-1/3x^2+5/9x
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Combine and .
Step 1.2.4
Combine and .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.3.4
Combine and .
Step 1.3.5
Combine and .
Step 1.3.6
Move the negative in front of the fraction.
Step 1.4
Evaluate .
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 1.5
Add and .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Combine and .
Step 2.2.4
Multiply by .
Step 2.2.5
Combine and .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Add and .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Combine and .
Step 3.2.4
Multiply by .
Step 3.2.5
Combine and .
Step 3.2.6
Cancel the common factor of and .
Tap for more steps...
Step 3.2.6.1
Factor out of .
Step 3.2.6.2
Cancel the common factors.
Tap for more steps...
Step 3.2.6.2.1
Factor out of .
Step 3.2.6.2.2
Cancel the common factor.
Step 3.2.6.2.3
Rewrite the expression.
Step 3.2.6.2.4
Divide by .
Step 3.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Add and .