Calculus Examples

Evaluate the Integral integral of 2 cube root of sin(2x)cos(2x) with respect to x
Step 1
Since is constant with respect to , move out of the integral.
Step 2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.1
Let . Find .
Tap for more steps...
Step 2.1.1
Differentiate .
Step 2.1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.2.1
To apply the Chain Rule, set as .
Step 2.1.2.2
The derivative of with respect to is .
Step 2.1.2.3
Replace all occurrences of with .
Step 2.1.3
Differentiate.
Tap for more steps...
Step 2.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3.3
Simplify the expression.
Tap for more steps...
Step 2.1.3.3.1
Multiply by .
Step 2.1.3.3.2
Move to the left of .
Step 2.2
Rewrite the problem using and .
Step 3
Combine and .
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Simplify the expression.
Tap for more steps...
Step 5.1
Simplify.
Tap for more steps...
Step 5.1.1
Combine and .
Step 5.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.1.2.1
Cancel the common factor.
Step 5.1.2.2
Rewrite the expression.
Step 5.1.3
Multiply by .
Step 5.2
Use to rewrite as .
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
Replace all occurrences of with .