Enter a problem...
Calculus Examples
Step 1
This integral could not be completed using integration by parts. Mathway will use another method.
Step 2
Let , where . Then . Note that since , is positive.
Step 3
Step 3.1
Simplify .
Step 3.1.1
Apply pythagorean identity.
Step 3.1.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2
Simplify.
Step 3.2.1
Raise to the power of .
Step 3.2.2
Raise to the power of .
Step 3.2.3
Use the power rule to combine exponents.
Step 3.2.4
Add and .
Step 4
Use the half-angle formula to rewrite as .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Split the single integral into multiple integrals.
Step 7
Apply the constant rule.
Step 8
Step 8.1
Let . Find .
Step 8.1.1
Differentiate .
Step 8.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.1.3
Differentiate using the Power Rule which states that is where .
Step 8.1.4
Multiply by .
Step 8.2
Rewrite the problem using and .
Step 9
Combine and .
Step 10
Since is constant with respect to , move out of the integral.
Step 11
The integral of with respect to is .
Step 12
Simplify.
Step 13
Step 13.1
Replace all occurrences of with .
Step 13.2
Replace all occurrences of with .
Step 13.3
Replace all occurrences of with .
Step 14
Step 14.1
Combine and .
Step 14.2
Apply the distributive property.
Step 14.3
Combine and .
Step 14.4
Multiply .
Step 14.4.1
Multiply by .
Step 14.4.2
Multiply by .
Step 15
Reorder terms.