Enter a problem...
Calculus Examples
Step 1
Since is constant with respect to , the derivative of with respect to is .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Simplify terms.
Step 3.2.1
Combine and .
Step 3.2.2
Combine and .
Step 3.2.3
Cancel the common factor of .
Step 3.2.3.1
Cancel the common factor.
Step 3.2.3.2
Divide by .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Multiply by .