Calculus Examples

Determine if Continuous f(x)=sec((pix)/4)
f(x)=sec(πx4)f(x)=sec(πx4)
Step 1
Find the domain to determine if the expression is continuous.
Tap for more steps...
Step 1.1
Set the argument in sec(πx4)sec(πx4) equal to π2+πnπ2+πn to find where the expression is undefined.
πx4=π2+πnπx4=π2+πn, for any integer nn
Step 1.2
Solve for xx.
Tap for more steps...
Step 1.2.1
Multiply both sides of the equation by 4π4π.
4ππx4=4π(π2+πn)4ππx4=4π(π2+πn)
Step 1.2.2
Simplify both sides of the equation.
Tap for more steps...
Step 1.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.2.1.1
Simplify 4ππx44ππx4.
Tap for more steps...
Step 1.2.2.1.1.1
Cancel the common factor of 44.
Tap for more steps...
Step 1.2.2.1.1.1.1
Cancel the common factor.
4ππx4=4π(π2+πn)
Step 1.2.2.1.1.1.2
Rewrite the expression.
1π(πx)=4π(π2+πn)
1π(πx)=4π(π2+πn)
Step 1.2.2.1.1.2
Cancel the common factor of π.
Tap for more steps...
Step 1.2.2.1.1.2.1
Factor π out of πx.
1π(π(x))=4π(π2+πn)
Step 1.2.2.1.1.2.2
Cancel the common factor.
1π(πx)=4π(π2+πn)
Step 1.2.2.1.1.2.3
Rewrite the expression.
x=4π(π2+πn)
x=4π(π2+πn)
x=4π(π2+πn)
x=4π(π2+πn)
Step 1.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.2.2.1
Simplify 4π(π2+πn).
Tap for more steps...
Step 1.2.2.2.1.1
Apply the distributive property.
x=4ππ2+4π(πn)
Step 1.2.2.2.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.2.2.1.2.1
Factor 2 out of 4.
x=2(2)ππ2+4π(πn)
Step 1.2.2.2.1.2.2
Cancel the common factor.
x=22ππ2+4π(πn)
Step 1.2.2.2.1.2.3
Rewrite the expression.
x=2ππ+4π(πn)
x=2ππ+4π(πn)
Step 1.2.2.2.1.3
Cancel the common factor of π.
Tap for more steps...
Step 1.2.2.2.1.3.1
Cancel the common factor.
x=2ππ+4π(πn)
Step 1.2.2.2.1.3.2
Rewrite the expression.
x=2+4π(πn)
x=2+4π(πn)
Step 1.2.2.2.1.4
Cancel the common factor of π.
Tap for more steps...
Step 1.2.2.2.1.4.1
Factor π out of πn.
x=2+4π(π(n))
Step 1.2.2.2.1.4.2
Cancel the common factor.
x=2+4π(πn)
Step 1.2.2.2.1.4.3
Rewrite the expression.
x=2+4n
x=2+4n
x=2+4n
x=2+4n
x=2+4n
Step 1.2.3
Reorder 2 and 4n.
x=4n+2
x=4n+2
Step 1.3
The domain is all values of x that make the expression defined.
Set-Builder Notation:
{x|x4n+2}, for any integer n
Set-Builder Notation:
{x|x4n+2}, for any integer n
Step 2
Since the domain is not all real numbers, sec(πx4) is not continuous over all real numbers.
Not continuous
Step 3
 [x2  12  π  xdx ]