Calculus Examples

Find dy/dx y = natural log of x+y
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.1.1
To apply the Chain Rule, set as .
Step 3.1.2
The derivative of with respect to is .
Step 3.1.3
Replace all occurrences of with .
Step 3.2
Differentiate.
Tap for more steps...
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Rewrite as .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Reorder the factors of .
Step 3.4.2
Multiply by .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Multiply both sides by .
Step 5.2
Simplify.
Tap for more steps...
Step 5.2.1
Simplify the left side.
Tap for more steps...
Step 5.2.1.1
Apply the distributive property.
Step 5.2.2
Simplify the right side.
Tap for more steps...
Step 5.2.2.1
Simplify .
Tap for more steps...
Step 5.2.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.1.1.1
Cancel the common factor.
Step 5.2.2.1.1.2
Rewrite the expression.
Step 5.2.2.1.2
Reorder and .
Step 5.3
Solve for .
Tap for more steps...
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Factor out of .
Tap for more steps...
Step 5.3.2.1
Factor out of .
Step 5.3.2.2
Factor out of .
Step 5.3.2.3
Factor out of .
Step 5.3.2.4
Factor out of .
Step 5.3.2.5
Factor out of .
Step 5.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.3.1
Divide each term in by .
Step 5.3.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.2.1.1
Cancel the common factor.
Step 5.3.3.2.1.2
Divide by .
Step 6
Replace with .