Enter a problem...
Calculus Examples
Step 1
Since is constant with respect to , the derivative of with respect to is .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3
Replace all occurrences of with .
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Raise to the power of .
Step 5
Use the power rule to combine exponents.
Step 6
Differentiate using the Power Rule which states that is where .
Step 7
Step 7.1
Reorder the factors of .
Step 7.2
Reorder factors in .