Calculus Examples

Evaluate the Integral integral from 0 to 1 of e^(1-2x) with respect to x
Step 1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 1.1
Let . Find .
Tap for more steps...
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate.
Tap for more steps...
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Subtract from .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Multiply by .
Step 1.3.2
Add and .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Multiply by .
Step 1.5.2
Subtract from .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Simplify.
Tap for more steps...
Step 2.1
Move the negative in front of the fraction.
Step 2.2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
The integral of with respect to is .
Step 6
Substitute and simplify.
Tap for more steps...
Step 6.1
Evaluate at and at .
Step 6.2
Simplify.
Step 7
Simplify.
Tap for more steps...
Step 7.1
Rewrite the expression using the negative exponent rule .
Step 7.2
Apply the distributive property.
Step 7.3
Multiply by .
Step 7.4
Multiply .
Tap for more steps...
Step 7.4.1
Multiply by .
Step 7.4.2
Multiply by .
Step 7.4.3
Combine and .
Step 7.5
Move to the left of .
Step 8
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 9