Calculus Examples

Evaluate the Limit limit as v approaches -3 of ( square root of 4-v- square root of 7)/(v+3)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.2
Move the limit under the radical sign.
Step 1.1.2.3
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.2.4
Evaluate the limit of which is constant as approaches .
Step 1.1.2.5
Evaluate the limit of which is constant as approaches .
Step 1.1.2.6
Simplify terms.
Tap for more steps...
Step 1.1.2.6.1
Evaluate the limit of by plugging in for .
Step 1.1.2.6.2
Simplify the answer.
Tap for more steps...
Step 1.1.2.6.2.1
Add and .
Step 1.1.2.6.2.2
Subtract from .
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Evaluate the limit.
Tap for more steps...
Step 1.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.1.3.1.2
Evaluate the limit of which is constant as approaches .
Step 1.1.3.2
Evaluate the limit of by plugging in for .
Step 1.1.3.3
Add and .
Step 1.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Evaluate .
Tap for more steps...
Step 1.3.3.1
Use to rewrite as .
Step 1.3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.3.2.1
To apply the Chain Rule, set as .
Step 1.3.3.2.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3.2.3
Replace all occurrences of with .
Step 1.3.3.3
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3.6
Differentiate using the Power Rule which states that is where .
Step 1.3.3.7
To write as a fraction with a common denominator, multiply by .
Step 1.3.3.8
Combine and .
Step 1.3.3.9
Combine the numerators over the common denominator.
Step 1.3.3.10
Simplify the numerator.
Tap for more steps...
Step 1.3.3.10.1
Multiply by .
Step 1.3.3.10.2
Subtract from .
Step 1.3.3.11
Move the negative in front of the fraction.
Step 1.3.3.12
Multiply by .
Step 1.3.3.13
Subtract from .
Step 1.3.3.14
Combine and .
Step 1.3.3.15
Combine and .
Step 1.3.3.16
Move to the left of .
Step 1.3.3.17
Rewrite as .
Step 1.3.3.18
Move to the denominator using the negative exponent rule .
Step 1.3.3.19
Move the negative in front of the fraction.
Step 1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.5
Add and .
Step 1.3.6
By the Sum Rule, the derivative of with respect to is .
Step 1.3.7
Differentiate using the Power Rule which states that is where .
Step 1.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.9
Add and .
Step 1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.5
Rewrite as .
Step 1.6
Multiply by .
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the term outside of the limit because it is constant with respect to .
Step 2.2
Move the term outside of the limit because it is constant with respect to .
Step 2.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 2.4
Evaluate the limit of which is constant as approaches .
Step 2.5
Move the limit under the radical sign.
Step 2.6
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.7
Evaluate the limit of which is constant as approaches .
Step 2.8
Simplify terms.
Tap for more steps...
Step 2.8.1
Evaluate the limit of by plugging in for .
Step 2.8.2
Simplify the answer.
Tap for more steps...
Step 2.8.2.1
Add and .
Step 2.8.2.2
Multiply by .
Step 2.8.2.3
Combine and simplify the denominator.
Tap for more steps...
Step 2.8.2.3.1
Multiply by .
Step 2.8.2.3.2
Raise to the power of .
Step 2.8.2.3.3
Raise to the power of .
Step 2.8.2.3.4
Use the power rule to combine exponents.
Step 2.8.2.3.5
Add and .
Step 2.8.2.3.6
Rewrite as .
Tap for more steps...
Step 2.8.2.3.6.1
Use to rewrite as .
Step 2.8.2.3.6.2
Apply the power rule and multiply exponents, .
Step 2.8.2.3.6.3
Combine and .
Step 2.8.2.3.6.4
Cancel the common factor of .
Tap for more steps...
Step 2.8.2.3.6.4.1
Cancel the common factor.
Step 2.8.2.3.6.4.2
Rewrite the expression.
Step 2.8.2.3.6.5
Evaluate the exponent.
Step 2.8.2.4
Multiply .
Tap for more steps...
Step 2.8.2.4.1
Multiply by .
Step 2.8.2.4.2
Multiply by .
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form: