Enter a problem...
Calculus Examples
∫-2√33-29x√4x2-4dx
Step 1
Since 9 is constant with respect to x, move 9 out of the integral.
9∫-2√33-21x√4x2-4dx
Step 2
Step 2.1
Rewrite 4x2 as (2x)2.
9∫-2√33-21x√(2x)2-4dx
Step 2.2
Rewrite 4 as 22.
9∫-2√33-21x√(2x)2-22dx
9∫-2√33-21x√(2x)2-22dx
Step 3
The integral of 1x√(2x)2-22 with respect to x is 12arcsec(|2x2|)
9(12arcsec(|2x2|)]-2√33-2)
Step 4
Step 4.1
Simplify.
Step 4.1.1
Cancel the common factor of 2.
Step 4.1.1.1
Cancel the common factor.
9(12arcsec(|2x2|)]-2√33-2)
Step 4.1.1.2
Divide x by 1.
9(12arcsec(|x|)]-2√33-2)
9(12arcsec(|x|)]-2√33-2)
Step 4.1.2
Combine 12 and arcsec(|x|).
9(arcsec(|x|)2]-2√33-2)
9(arcsec(|x|)2]-2√33-2)
Step 4.2
Evaluate arcsec(|x|)2 at -2√33 and at -2.
9(arcsec(|-2√33|)2-arcsec(|-2|)2)
9(arcsec(|-2√33|)2-arcsec(|-2|)2)
Step 5
Step 5.1
Combine the numerators over the common denominator.
9arcsec(|-2√33|)-arcsec(|-2|)2
Step 5.2
Simplify each term.
Step 5.2.1
-2√33 is approximately -1.15470053 which is negative so negate -2√33 and remove the absolute value
9arcsec(2√33)-arcsec(|-2|)2
Step 5.2.2
The exact value of arcsec(2√33) is π6.
9π6-arcsec(|-2|)2
Step 5.2.3
The absolute value is the distance between a number and zero. The distance between -2 and 0 is 2.
9π6-arcsec(2)2
Step 5.2.4
The exact value of arcsec(2) is π3.
9π6-π32
9π6-π32
Step 5.3
To write -π3 as a fraction with a common denominator, multiply by 22.
9π6-π3⋅222
Step 5.4
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 5.4.1
Multiply π3 by 22.
9π6-π⋅23⋅22
Step 5.4.2
Multiply 3 by 2.
9π6-π⋅262
9π6-π⋅262
Step 5.5
Combine the numerators over the common denominator.
9π-π⋅262
Step 5.6
Simplify the numerator.
Step 5.6.1
Multiply 2 by -1.
9π-2π62
Step 5.6.2
Subtract 2π from π.
9-π62
9-π62
Step 5.7
Move the negative in front of the fraction.
9-π62
Step 5.8
Multiply the numerator by the reciprocal of the denominator.
9(-π6⋅12)
Step 5.9
Multiply -π6⋅12.
Step 5.9.1
Multiply 12 by π6.
9(-π2⋅6)
Step 5.9.2
Multiply 2 by 6.
9(-π12)
9(-π12)
Step 5.10
Cancel the common factor of 3.
Step 5.10.1
Move the leading negative in -π12 into the numerator.
9-π12
Step 5.10.2
Factor 3 out of 9.
3(3)-π12
Step 5.10.3
Factor 3 out of 12.
3⋅3-π3⋅4
Step 5.10.4
Cancel the common factor.
3⋅3-π3⋅4
Step 5.10.5
Rewrite the expression.
3-π4
3-π4
Step 5.11
Combine 3 and -π4.
3(-π)4
Step 5.12
Multiply -1 by 3.
-3π4
Step 5.13
Move the negative in front of the fraction.
-3π4
-3π4
Step 6
The result can be shown in multiple forms.
Exact Form:
-3π4
Decimal Form:
-2.35619449…
Step 7