Calculus Examples

Find the Maximum/Minimum Value y=1/2tan(2x)
y=12tan(2x)y=12tan(2x)
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Since 1212 is constant with respect to xx, the derivative of 12tan(2x)12tan(2x) with respect to xx is 12ddx[tan(2x)]12ddx[tan(2x)].
12ddx[tan(2x)]12ddx[tan(2x)]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x) where f(x)=tan(x) and g(x)=2x.
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set u as 2x.
12(ddu[tan(u)]ddx[2x])
Step 1.2.2
The derivative of tan(u) with respect to u is sec2(u).
12(sec2(u)ddx[2x])
Step 1.2.3
Replace all occurrences of u with 2x.
12(sec2(2x)ddx[2x])
12(sec2(2x)ddx[2x])
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Combine sec2(2x) and 12.
sec2(2x)2ddx[2x]
Step 1.3.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
sec2(2x)2(2ddx[x])
Step 1.3.3
Simplify terms.
Tap for more steps...
Step 1.3.3.1
Combine 2 and sec2(2x)2.
2sec2(2x)2ddx[x]
Step 1.3.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.3.3.2.1
Cancel the common factor.
2sec2(2x)2ddx[x]
Step 1.3.3.2.2
Divide sec2(2x) by 1.
sec2(2x)ddx[x]
sec2(2x)ddx[x]
sec2(2x)ddx[x]
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
sec2(2x)1
Step 1.3.5
Multiply sec2(2x) by 1.
sec2(2x)
sec2(2x)
sec2(2x)
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=sec(2x).
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set u1 as sec(2x).
f′′(x)=ddu(1)(u12)ddx(sec(2x))
Step 2.1.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
f′′(x)=2u1ddx(sec(2x))
Step 2.1.3
Replace all occurrences of u1 with sec(2x).
f′′(x)=2sec(2x)ddx(sec(2x))
f′′(x)=2sec(2x)ddx(sec(2x))
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=sec(x) and g(x)=2x.
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set u2 as 2x.
f′′(x)=2sec(2x)(ddu(2)(sec(u2))ddx(2x))
Step 2.2.2
The derivative of sec(u2) with respect to u2 is sec(u2)tan(u2).
f′′(x)=2sec(2x)(sec(u2)tan(u2)ddx(2x))
Step 2.2.3
Replace all occurrences of u2 with 2x.
f′′(x)=2sec(2x)(sec(2x)tan(2x)ddx(2x))
f′′(x)=2sec(2x)(sec(2x)tan(2x)ddx(2x))
Step 2.3
Raise sec(2x) to the power of 1.
f′′(x)=2(sec(2x)sec(2x))(tan(2x)ddx(2x))
Step 2.4
Raise sec(2x) to the power of 1.
f′′(x)=2(sec(2x)sec(2x))(tan(2x)ddx(2x))
Step 2.5
Use the power rule aman=am+n to combine exponents.
f′′(x)=2sec(2x)1+1(tan(2x)ddx(2x))
Step 2.6
Add 1 and 1.
f′′(x)=2sec2(2x)(tan(2x)ddx(2x))
Step 2.7
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
f′′(x)=2sec2(2x)tan(2x)(2ddx(x))
Step 2.8
Multiply 2 by 2.
f′′(x)=4sec2(2x)tan(2x)ddx(x)
Step 2.9
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=4sec2(2x)tan(2x)1
Step 2.10
Multiply 4 by 1.
f′′(x)=4sec2(2x)tan(2x)
f′′(x)=4sec2(2x)tan(2x)
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
sec2(2x)=0
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(2x)=±0
Step 5
Simplify ±0.
Tap for more steps...
Step 5.1
Rewrite 0 as 02.
sec(2x)=±02
Step 5.2
Pull terms out from under the radical, assuming positive real numbers.
sec(2x)=±0
Step 5.3
Plus or minus 0 is 0.
sec(2x)=0
sec(2x)=0
Step 6
The range of secant is y-1 and y1. Since 0 does not fall in this range, there is no solution.
No solution
Step 7
Evaluate the second derivative at x=. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
4sec2(2)tan(2)
Step 8
Evaluate the second derivative.
Tap for more steps...
Step 8.1
Evaluate sec(2).
41.000609542tan(2)
Step 8.2
Raise 1.00060954 to the power of 2.
41.00121946tan(2)
Step 8.3
Multiply 4 by 1.00121946.
4.00487784tan(2)
Step 8.4
Evaluate tan(2).
4.004877840.03492076
Step 8.5
Multiply 4.00487784 by 0.03492076.
0.13985341
0.13985341
Step 9
x= is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
x= is a local minimum
Step 10
These are the local extrema for f(x)=12tan(2x).
(,isa(local)(minimum)) is a local minima
Step 11
 [x2  12  π  xdx ]