Enter a problem...
Calculus Examples
y=12tan(2x)y=12tan(2x)
Step 1
Step 1.1
Since 1212 is constant with respect to xx, the derivative of 12⋅tan(2x)12⋅tan(2x) with respect to xx is 12ddx[tan(2x)]12ddx[tan(2x)].
12ddx[tan(2x)]12ddx[tan(2x)]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=tan(x) and g(x)=2x.
Step 1.2.1
To apply the Chain Rule, set u as 2x.
12(ddu[tan(u)]ddx[2x])
Step 1.2.2
The derivative of tan(u) with respect to u is sec2(u).
12(sec2(u)ddx[2x])
Step 1.2.3
Replace all occurrences of u with 2x.
12(sec2(2x)ddx[2x])
12(sec2(2x)ddx[2x])
Step 1.3
Differentiate.
Step 1.3.1
Combine sec2(2x) and 12.
sec2(2x)2ddx[2x]
Step 1.3.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
sec2(2x)2(2ddx[x])
Step 1.3.3
Simplify terms.
Step 1.3.3.1
Combine 2 and sec2(2x)2.
2sec2(2x)2ddx[x]
Step 1.3.3.2
Cancel the common factor of 2.
Step 1.3.3.2.1
Cancel the common factor.
2sec2(2x)2ddx[x]
Step 1.3.3.2.2
Divide sec2(2x) by 1.
sec2(2x)ddx[x]
sec2(2x)ddx[x]
sec2(2x)ddx[x]
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
sec2(2x)⋅1
Step 1.3.5
Multiply sec2(2x) by 1.
sec2(2x)
sec2(2x)
sec2(2x)
Step 2
Step 2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=sec(2x).
Step 2.1.1
To apply the Chain Rule, set u1 as sec(2x).
f′′(x)=ddu(1)(u12)ddx(sec(2x))
Step 2.1.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
f′′(x)=2u1ddx(sec(2x))
Step 2.1.3
Replace all occurrences of u1 with sec(2x).
f′′(x)=2sec(2x)ddx(sec(2x))
f′′(x)=2sec(2x)ddx(sec(2x))
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=sec(x) and g(x)=2x.
Step 2.2.1
To apply the Chain Rule, set u2 as 2x.
f′′(x)=2sec(2x)(ddu(2)(sec(u2))ddx(2x))
Step 2.2.2
The derivative of sec(u2) with respect to u2 is sec(u2)tan(u2).
f′′(x)=2sec(2x)(sec(u2)tan(u2)ddx(2x))
Step 2.2.3
Replace all occurrences of u2 with 2x.
f′′(x)=2sec(2x)(sec(2x)tan(2x)ddx(2x))
f′′(x)=2sec(2x)(sec(2x)tan(2x)ddx(2x))
Step 2.3
Raise sec(2x) to the power of 1.
f′′(x)=2(sec(2x)sec(2x))(tan(2x)ddx(2x))
Step 2.4
Raise sec(2x) to the power of 1.
f′′(x)=2(sec(2x)sec(2x))(tan(2x)ddx(2x))
Step 2.5
Use the power rule aman=am+n to combine exponents.
f′′(x)=2sec(2x)1+1(tan(2x)ddx(2x))
Step 2.6
Add 1 and 1.
f′′(x)=2sec2(2x)(tan(2x)ddx(2x))
Step 2.7
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
f′′(x)=2sec2(2x)tan(2x)(2ddx(x))
Step 2.8
Multiply 2 by 2.
f′′(x)=4sec2(2x)tan(2x)ddx(x)
Step 2.9
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=4sec2(2x)tan(2x)⋅1
Step 2.10
Multiply 4 by 1.
f′′(x)=4sec2(2x)tan(2x)
f′′(x)=4sec2(2x)tan(2x)
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
sec2(2x)=0
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
sec(2x)=±√0
Step 5
Step 5.1
Rewrite 0 as 02.
sec(2x)=±√02
Step 5.2
Pull terms out from under the radical, assuming positive real numbers.
sec(2x)=±0
Step 5.3
Plus or minus 0 is 0.
sec(2x)=0
sec(2x)=0
Step 6
The range of secant is y≤-1 and y≥1. Since 0 does not fall in this range, there is no solution.
No solution
Step 7
Evaluate the second derivative at x=. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
4sec2(2)tan(2)
Step 8
Step 8.1
Evaluate sec(2).
4⋅1.000609542tan(2)
Step 8.2
Raise 1.00060954 to the power of 2.
4⋅1.00121946tan(2)
Step 8.3
Multiply 4 by 1.00121946.
4.00487784tan(2)
Step 8.4
Evaluate tan(2).
4.00487784⋅0.03492076
Step 8.5
Multiply 4.00487784 by 0.03492076.
0.13985341
0.13985341
Step 9
x= is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
x= is a local minimum
Step 10
These are the local extrema for f(x)=12⋅tan(2x).
(,isa(local)(minimum)) is a local minima
Step 11