Calculus Examples

Find the Maximum/Minimum Value f(x)=x^5-4x^3+x^2+2
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Differentiate using the Power Rule which states that is where .
Step 1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3
Add and .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Evaluate .
Tap for more steps...
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
Differentiate.
Tap for more steps...
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2
Evaluate .
Tap for more steps...
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Multiply by .
Step 4.1.3
Differentiate.
Tap for more steps...
Step 4.1.3.1
Differentiate using the Power Rule which states that is where .
Step 4.1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.3
Add and .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify each term.
Tap for more steps...
Step 9.1.1
Raise to the power of .
Step 9.1.2
Multiply by .
Step 9.1.3
Multiply by .
Step 9.2
Simplify by adding numbers.
Tap for more steps...
Step 9.2.1
Add and .
Step 9.2.2
Add and .
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Find the y-value when .
Tap for more steps...
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Simplify each term.
Tap for more steps...
Step 11.2.1.1
Raise to the power of .
Step 11.2.1.2
Raise to the power of .
Step 11.2.1.3
Multiply by .
Step 11.2.1.4
Raise to the power of .
Step 11.2.2
Simplify by adding numbers.
Tap for more steps...
Step 11.2.2.1
Add and .
Step 11.2.2.2
Add and .
Step 11.2.2.3
Add and .
Step 11.2.3
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Evaluate the second derivative.
Tap for more steps...
Step 13.1
Simplify each term.
Tap for more steps...
Step 13.1.1
Raising to any positive power yields .
Step 13.1.2
Multiply by .
Step 13.1.3
Multiply by .
Step 13.2
Simplify by adding numbers.
Tap for more steps...
Step 13.2.1
Add and .
Step 13.2.2
Add and .
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Find the y-value when .
Tap for more steps...
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Simplify each term.
Tap for more steps...
Step 15.2.1.1
Raising to any positive power yields .
Step 15.2.1.2
Raising to any positive power yields .
Step 15.2.1.3
Multiply by .
Step 15.2.1.4
Raising to any positive power yields .
Step 15.2.2
Simplify by adding numbers.
Tap for more steps...
Step 15.2.2.1
Add and .
Step 15.2.2.2
Add and .
Step 15.2.2.3
Add and .
Step 15.2.3
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Evaluate the second derivative.
Tap for more steps...
Step 17.1
Simplify each term.
Tap for more steps...
Step 17.1.1
Raise to the power of .
Step 17.1.2
Multiply by .
Step 17.1.3
Multiply by .
Step 17.2
Simplify by adding and subtracting.
Tap for more steps...
Step 17.2.1
Subtract from .
Step 17.2.2
Add and .
Step 18
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 19
Find the y-value when .
Tap for more steps...
Step 19.1
Replace the variable with in the expression.
Step 19.2
Simplify the result.
Tap for more steps...
Step 19.2.1
Simplify each term.
Tap for more steps...
Step 19.2.1.1
Raise to the power of .
Step 19.2.1.2
Raise to the power of .
Step 19.2.1.3
Multiply by .
Step 19.2.1.4
Raise to the power of .
Step 19.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 19.2.2.1
Subtract from .
Step 19.2.2.2
Add and .
Step 19.2.2.3
Add and .
Step 19.2.3
The final answer is .
Step 20
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 21
Evaluate the second derivative.
Tap for more steps...
Step 21.1
Simplify each term.
Tap for more steps...
Step 21.1.1
Raise to the power of .
Step 21.1.2
Multiply by .
Step 21.1.3
Multiply by .
Step 21.2
Simplify by adding and subtracting.
Tap for more steps...
Step 21.2.1
Subtract from .
Step 21.2.2
Add and .
Step 22
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 23
Find the y-value when .
Tap for more steps...
Step 23.1
Replace the variable with in the expression.
Step 23.2
Simplify the result.
Tap for more steps...
Step 23.2.1
Simplify each term.
Tap for more steps...
Step 23.2.1.1
Raise to the power of .
Step 23.2.1.2
Raise to the power of .
Step 23.2.1.3
Multiply by .
Step 23.2.1.4
Raise to the power of .
Step 23.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 23.2.2.1
Subtract from .
Step 23.2.2.2
Add and .
Step 23.2.2.3
Add and .
Step 23.2.3
The final answer is .
Step 24
These are the local extrema for .
is a local maxima
is a local minima
is a local maxima
is a local minima
Step 25