Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Differentiate.
Step 1.3.1
Differentiate using the Power Rule which states that is where .
Step 1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3
Add and .
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate.
Step 4.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.1.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2
Evaluate .
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Multiply by .
Step 4.1.3
Differentiate.
Step 4.1.3.1
Differentiate using the Power Rule which states that is where .
Step 4.1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.3
Add and .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Raise to the power of .
Step 9.1.2
Multiply by .
Step 9.1.3
Multiply by .
Step 9.2
Simplify by adding numbers.
Step 9.2.1
Add and .
Step 9.2.2
Add and .
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Raise to the power of .
Step 11.2.1.2
Raise to the power of .
Step 11.2.1.3
Multiply by .
Step 11.2.1.4
Raise to the power of .
Step 11.2.2
Simplify by adding numbers.
Step 11.2.2.1
Add and .
Step 11.2.2.2
Add and .
Step 11.2.2.3
Add and .
Step 11.2.3
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Raising to any positive power yields .
Step 13.1.2
Multiply by .
Step 13.1.3
Multiply by .
Step 13.2
Simplify by adding numbers.
Step 13.2.1
Add and .
Step 13.2.2
Add and .
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Step 15.2.1
Simplify each term.
Step 15.2.1.1
Raising to any positive power yields .
Step 15.2.1.2
Raising to any positive power yields .
Step 15.2.1.3
Multiply by .
Step 15.2.1.4
Raising to any positive power yields .
Step 15.2.2
Simplify by adding numbers.
Step 15.2.2.1
Add and .
Step 15.2.2.2
Add and .
Step 15.2.2.3
Add and .
Step 15.2.3
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Step 17.1
Simplify each term.
Step 17.1.1
Raise to the power of .
Step 17.1.2
Multiply by .
Step 17.1.3
Multiply by .
Step 17.2
Simplify by adding and subtracting.
Step 17.2.1
Subtract from .
Step 17.2.2
Add and .
Step 18
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 19
Step 19.1
Replace the variable with in the expression.
Step 19.2
Simplify the result.
Step 19.2.1
Simplify each term.
Step 19.2.1.1
Raise to the power of .
Step 19.2.1.2
Raise to the power of .
Step 19.2.1.3
Multiply by .
Step 19.2.1.4
Raise to the power of .
Step 19.2.2
Simplify by adding and subtracting.
Step 19.2.2.1
Subtract from .
Step 19.2.2.2
Add and .
Step 19.2.2.3
Add and .
Step 19.2.3
The final answer is .
Step 20
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 21
Step 21.1
Simplify each term.
Step 21.1.1
Raise to the power of .
Step 21.1.2
Multiply by .
Step 21.1.3
Multiply by .
Step 21.2
Simplify by adding and subtracting.
Step 21.2.1
Subtract from .
Step 21.2.2
Add and .
Step 22
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 23
Step 23.1
Replace the variable with in the expression.
Step 23.2
Simplify the result.
Step 23.2.1
Simplify each term.
Step 23.2.1.1
Raise to the power of .
Step 23.2.1.2
Raise to the power of .
Step 23.2.1.3
Multiply by .
Step 23.2.1.4
Raise to the power of .
Step 23.2.2
Simplify by adding and subtracting.
Step 23.2.2.1
Subtract from .
Step 23.2.2.2
Add and .
Step 23.2.2.3
Add and .
Step 23.2.3
The final answer is .
Step 24
These are the local extrema for .
is a local maxima
is a local minima
is a local maxima
is a local minima
Step 25