Enter a problem...
Calculus Examples
1x√x2+11x√x2+1
Step 1
Write 1x√x2+1 as a function.
f(x)=1x√x2+1
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=∫f(x)dx
Step 3
Set up the integral to solve.
F(x)=∫1x√x2+1dx
Step 4
Let x=tan(t), where -π2≤t≤π2. Then dx=sec2(t)dt. Note that since -π2≤t≤π2, sec2(t) is positive.
∫1tan(t)√tan2(t)+1sec2(t)dt
Step 5
Step 5.1
Simplify √tan2(t)+1.
Step 5.1.1
Apply pythagorean identity.
∫1tan(t)√sec2(t)sec2(t)dt
Step 5.1.2
Pull terms out from under the radical, assuming positive real numbers.
∫1tan(t)sec(t)sec2(t)dt
∫1tan(t)sec(t)sec2(t)dt
Step 5.2
Simplify terms.
Step 5.2.1
Cancel the common factor of sec(t).
Step 5.2.1.1
Factor sec(t) out of tan(t)sec(t).
∫1sec(t)tan(t)sec2(t)dt
Step 5.2.1.2
Factor sec(t) out of sec2(t).
∫1sec(t)tan(t)(sec(t)sec(t))dt
Step 5.2.1.3
Cancel the common factor.
∫1sec(t)tan(t)(sec(t)sec(t))dt
Step 5.2.1.4
Rewrite the expression.
∫1tan(t)sec(t)dt
∫1tan(t)sec(t)dt
Step 5.2.2
Combine 1tan(t) and sec(t).
∫sec(t)tan(t)dt
Step 5.2.3
Simplify.
Step 5.2.3.1
Rewrite tan(t) in terms of sines and cosines.
∫sec(t)sin(t)cos(t)dt
Step 5.2.3.2
Rewrite sec(t) in terms of sines and cosines.
∫1cos(t)sin(t)cos(t)dt
Step 5.2.3.3
Multiply by the reciprocal of the fraction to divide by sin(t)cos(t).
∫1cos(t)⋅cos(t)sin(t)dt
Step 5.2.3.4
Cancel the common factor of cos(t).
Step 5.2.3.4.1
Cancel the common factor.
∫1cos(t)⋅cos(t)sin(t)dt
Step 5.2.3.4.2
Rewrite the expression.
∫1sin(t)dt
∫1sin(t)dt
Step 5.2.3.5
Convert from 1sin(t) to csc(t).
∫csc(t)dt
∫csc(t)dt
∫csc(t)dt
∫csc(t)dt
Step 6
The integral of csc(t) with respect to t is ln(|csc(t)-cot(t)|).
ln(|csc(t)-cot(t)|)+C
Step 7
Replace all occurrences of t with arctan(x).
ln(|csc(arctan(x))-cot(arctan(x))|)+C
Step 8
The answer is the antiderivative of the function f(x)=1x√x2+1.
F(x)=ln(|csc(arctan(x))-cot(arctan(x))|)+C