Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate using the Power Rule which states that is where .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Differentiate using the chain rule, which states that is where and .
Step 3.2.1.1
To apply the Chain Rule, set as .
Step 3.2.1.2
The derivative of with respect to is .
Step 3.2.1.3
Replace all occurrences of with .
Step 3.2.2
Rewrite as .
Step 3.3
Evaluate .
Step 3.3.1
Differentiate using the chain rule, which states that is where and .
Step 3.3.1.1
To apply the Chain Rule, set as .
Step 3.3.1.2
The derivative of with respect to is .
Step 3.3.1.3
Replace all occurrences of with .
Step 3.3.2
Rewrite as .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Rewrite the equation as .
Step 5.2
Simplify the left side.
Step 5.2.1
Reorder factors in .
Step 5.3
Factor out of .
Step 5.3.1
Factor out of .
Step 5.3.2
Factor out of .
Step 5.4
Divide each term in by and simplify.
Step 5.4.1
Divide each term in by .
Step 5.4.2
Simplify the left side.
Step 5.4.2.1
Cancel the common factor of .
Step 5.4.2.1.1
Cancel the common factor.
Step 5.4.2.1.2
Rewrite the expression.
Step 5.4.2.2
Cancel the common factor of .
Step 5.4.2.2.1
Cancel the common factor.
Step 5.4.2.2.2
Divide by .
Step 5.4.3
Simplify the right side.
Step 5.4.3.1
Separate fractions.
Step 5.4.3.2
Rewrite in terms of sines and cosines.
Step 5.4.3.3
Multiply by the reciprocal of the fraction to divide by .
Step 5.4.3.4
Multiply by .
Step 5.4.3.5
Combine and .
Step 6
Replace with .